A Web-Based Guide to the Diagnosis and Treatment of Chronic Ophthalmic Pathologies

by

Carlee Taylor

Submitted in partial fulfillment of the requirements for graduation as an Honors Scholar at Point Loma Nazarene University, San Diego, California, May 4, 2019.

Approved by ______________________________

Dr. Leon Kugler

Dr. Brandon Sawyer

Date____________________________________
ABSTRACT

Chronic ophthalmic pathologies are a prevalent cause of blindness and vision impairment (VI) in the world. There are an estimated 1.02 million people who are blind, 3.22 million people with vision impairment, and 8.2 million people living with correctable vision impairment. Glaucoma, age-related macular degeneration, cataract, cancers, and diabetic retinopathy are the prominent pathologies among the many that can cause vision impairment or vision loss. These pathologies disproportionally affect the elderly and can significantly affect quality and safety of daily life, mentally and physically. Those with vision impairment are more likely to suffer from trauma due to falls and driving accidents, develop other chronic conditions, and suffer from depression. The purpose of this project is to generate a web application, targeted for Pre-health care students and professionals, for the diagnosis and treatment of those suffering from VI or vision loss due to ocular and systemic pathologies. The web application will provide epidemiology, etiology, pathogenesis, clinical manifestations, treatment, and prognosis for pathologies that cause blindness or vision impairment. The guide will be based on an extensive evidence-based literature review, cadaveric dissection, and pedagogical technical studies and practice.
IDENTIFICATION OF THE RESEARCH PROBLEM AND REVIEW OF THE LITERATURE

Introduction
Chronic ophthalmic pathologies are a prevalent cause of blindness and vision impairment in the Western world. The prevalence of vision loss or impairment is estimated to affect 2.94% of the United States population with 30% of those individuals over 75 years of age.

According to Wittenborn and colleagues, approximately 2.14 million persons aged 18-39 years of age are affected by 13 different pathologies. Those with VI and vision loss experience a significant effect on productivity, incidence of chronic health conditions, social relationships, emotional well-being, physical safety, and independence of the individuals impacted, adversely affects our society as a whole, monetarily and socially. An estimated $35.4 billion is spent on major adult visual disorders annually.

Health-related quality of life (HRQOL) associated with vision impairment decreases as severity of vision loss increases. Individuals will experience fair/poor health, life dissatisfaction, disability, unhealthy physical and mental health days, and activity limitation.

The majority of these conditions rely on preventative screening to avert progression of vision loss. The most prevalent ocular diseases in the elderly are cataracts, glaucoma, and age-related macular degeneration (AMD). The increase in cataract surgery has greatly improved the impact of cataract; however, the effects of glaucoma and AMD are irreversible. Prevention of these chronic diseases is paramount. Patient education and access to eye care, especially for at-risk populations of the most impactful ocular diseases, can dramatically impact quality of treatment and daily life. In at-risk populations for the most impactful ocular pathologies, there is an underutilization of eye-care due to socioeconomic factors, education level, and physician-patient relationship, cultural barriers, and insurance.

With the aging of the United States population, the incidence of these diseases will more than double.

The purpose of this study is to create a reference tool for pre-health students, Allied health clinicians, and those affected by chronic ophthalmic pathologies who may be treating or experiencing vision impairment. This pedagogical tool will provide a convenient guide to the epidemiology, etiology, pathogenesis, clinical manifestations, diagnosis, and treatment. Many of the chronic ophthalmic pathologies’ pathogenesis are still unknown, this guide will delve into the current theories. It will educate those going into the health field, so they can better understand the long-term diseases that affect the eye.

METHODS

Design and Data Collection Procedures
A literature review of peer reviewed journals and medical reference materials were completed to ensure current insights into the chosen diseases. Only data from an authoritative medical authority website was used. CINAHL Plus and MEDLINE search engines were utilized primarily. No human subjects will be used in this study. Cadaveric dissection figures contribute to overall understanding of the anatomy and function of structures of the ocular region. Also, serves as a frame of reference for those unfamiliar with the anatomy. The cadaveric dissection
was conducted using one specimen. The extrinsic eye muscles were dissected bilaterally from both the superior and anterior directions.

Pathologies were included in the guide based off epidemiology, chronic versus acute, region of ocular area (retina, lens, cornea, etc.), and extent of vision impairment. Diseases included are cataract, glaucoma, age-related macular degeneration, diabetic retinopathy, keratoconus, pellucid marginal degeneration, post-surgery corneal ectasia, hypertensive retinopathy, retinoblastoma, Fuch’s corneal dystrophy, herpes zoster ophthalmicus, amblyopia, retinitis pigmentosa, and retinal detachment. The final list was discussed with an optometrist to determine clinical relevance of diseases. Website was organized by pathology and includes specific sections on epidemiology, etiology, pathogenesis, clinical manifestations, effect on vision, diagnosis, and treatment for each pathology. Vision impairment is determined as best-corrected vision in better-seeing eye that is worse than 20/40, but better than 20/200. Blindness is categorized as a visual acuity 20/200 or worse.

SIGNIFICANCE OF PROPOSED RESEARCH

Anticipated Outcomes

This project will be useful to undergraduate and medical students, allied health professionals, and patients who work with or will develop chronic ophthalmic pathologies. The goal is to provide a resource of current information for those interested and wanting to learn about these conditions. It will provide an in-depth analysis of the epidemiology, current developments in the pathogenesis, diagnosis, and treatment of the pathologies.

Relevance to Allied Health

The web-based guide will enhance the knowledge and education of allied health professionals, professors, and students. It will serve as a reference tool and reminder regarding the significance of early-prevention, screening, and impact of regular eye-care in treatment of ocular diseases. Due to the aging of the United States population, the number of individuals impacted with VI or blindness is predicted to greatly increase, by 2050 the number of affected will double.¹ The web-based guide will serve as a easy to use resource for pre-health students, clinicians unfamiliar with ocular diseases, and patients to learn the epidemiology, pathogenesis, clinical manifestations, and treatment of ocular diseases. Allied health students and professionals will have a reference tool to better serve their patients by learning the epidemiology and typical presentations of chronic ocular diseases. It is essential that pre-medical students and medical professionals can distinguish between and identify these chronic ophthalmic pathologies.
The eye is a complex sphere enclosed by three distinct layers and fluid-filled. The outermost layer is the sclera, a tough, white, fibrous tissue acting as a point of attachment for the extrinsic eye muscles. The cornea is a transparent tissue continuous with the sclera that contributes to the majority of light refraction and inverts the image as light enters the eye. The innermost layer of the eye is the retina, composed of neurons that capture light and send visual signals to the brain. The middle layer is referred to as the uveal tract, composed of three distinct, continuous layers (choroid, ciliary body, and iris). The choroid, the largest layer, contains a capillary bed necessary to transport nutrients to the retina and contains the light-absorbing pigment melanin. Melanin is located in the pigment epithelium directing adjacent to the retina and absorbs excess light not captured by the retina. The ciliary body encircles the lens with a muscular and vascular portion. The muscular portion of the ciliary body adjusts the refractive power of the lens by changing tension placed on the lens through the suspensory ligaments. The suspensory ligaments are attached to both the ciliary muscle and the lens. The ciliary processes, vascular portion, secretes fluid found in the anterior compartment of the eye. The aqueous humor is a clear, watery fluid produced in the posterior chamber that enters the anterior chamber through the pupil and provides nutrients to the lens. Aquous humor is drained through the trabecular meshwork located at the base of the cornea near the ciliary body. The iris, the colored portion of the eye, is a set of muscles that change the size of the eye opening, the pupil.

As light is refracted by the lens, it continues through the vitreous humor and is focused on the retina. The vitreous humor fills the posterior chamber, the back of the lens to the retina. The vitreous humor maintains the shape of the eye and contains phagocytic cells the remove blood and debris from the chamber. As the eye ages, large pieces of debris collect as the phagocytic cells failed to clear and cause floaters to appear in the visual field. The retina is composed of photoreceptors, bipolar cells, and retinal ganglion cells (RGC), most importantly the photoreceptor cells. Photoreceptor cells located at the most posterior retina detect light and made up of two cells types: rods and cones. Rods detect low light and primarily located on the
peripheral retina. Cones are responsible for color vision and detect intense light. Macula is a yellow pigmented circle located near the center of the retina. The center of the macula is referred to as the fovea centralis and is location of highest visual acuity. Also, the fovea has the highest density of cones. The visual signal is transmitted from the photoreceptors to the bipolar cells to the retinal ganglion cells to the optic nerve. The photoreceptors are the farthest posterior so light must first pass through the RGC and the bipolar cells, respectively, to reach the photoreceptors. The optic nerve is the location of all of the retinal ganglion cells exiting the eye. No photoreceptors exist at the optic nerve and is a blind spot. A blind spot is a visual field deficit known as scotoma. The brain fills in the scotoma created by the optic nerve with the opposing eye’s visual field.

Figure 2: Retinal Structures of the photoreceptors (rods and cones), bipolar cells, and retinal ganglion cells.
Table 1: Anatomical structures affected by respective pathology.

<table>
<thead>
<tr>
<th>Anatomy Affected</th>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornea</td>
<td>Keratoconus, Pellucid Marginal Degeneration, Post-surgery Corneal Ectasia, Fuch’s Corneal Dystrophy</td>
</tr>
<tr>
<td>Lens</td>
<td>Cataracts</td>
</tr>
<tr>
<td>Retina</td>
<td>Diabetic Retinopathy, Hypertensive Retinopathy, Retinitis Pigmentosa, Retinoblastoma</td>
</tr>
<tr>
<td>Macula</td>
<td>Age-related Macular Degeneration</td>
</tr>
<tr>
<td>Optic Nerve</td>
<td>Glaucoma</td>
</tr>
<tr>
<td>Visual Processing</td>
<td>Amblyopia (strabismus)</td>
</tr>
</tbody>
</table>

Extrinsic Eye Muscles

The extrinsic eye muscles all attach to the sclera. The superior oblique muscle originates in the upper, medial side of the orbit and inserts on the superior lateral portion of the globe. The superior oblique runs along a site of attachment, the trochlea, to obtain the angle to abduct, depress, and internally rotate the eye. The inferior oblique originates in the lower, medial side of the orbit and inserts on the inferior globe. It abducts, elevates, and externally rotates the eye. The superior rectus muscle elevates the eye. The inferior rectus muscle depresses the eye. The medial rectus muscle is the primary adductor of the eye and the lateral rectus is the primary abductor of the eye. The levator palpebrae superioris elevates the eyelid.

![Superior View of Extraocular Muscles](image_url)

Figure 3: Superior View of extraocular muscles of the right eye.
Figure 4: Lateral surface displaying the extraocular muscles of the right eye.
Figure 5: Superior view of the extraocular muscles of the right eye

a) Black arrow dictates the superior oblique muscle traveling through the trochlea (bordered by dissection tools)

b) Black arrow denotes the muscle body of the inferior oblique muscle.

c) The superior rectus is shown.
Figure 6: Superior view of the extraocular muscles of the right eye with black arrow denoting respective muscle.
 a) Inferior rectus muscle is under tension by the probe
 b) Lateral rectus muscle (red tissue)
 c) Medial rectus
 d) Levator palpebrae superioris labeled by #5 pin and trochlear nerve labeled by #4 pin.
PATHOLOGIES

The complex structure of the eye is apparent in the various pathologies that affect the ophthalmic region. The following pathologies included are: cataract, glaucoma, age-related macular degeneration, diabetic retinopathy, keratoconus, pellucid marginal degeneration, post-surgery corneal ectasia, hypertensive retinopathy, retinoblastoma, Fuch’s corneal dystrophy, herpes zoster ophthalmicus, amblyopia, and retinitis pigmentosa. The following section provides an overview of the populations affected, diagnostic criteria, signs and symptoms, and current treatment options.

Cataract

Overview

Cataract is the congenital or degenerative loss of the transparency of the lens due to protein aggregation within the lens. The lens is a clear structure located posterior to the iris and pupil focuses light on the retina. As the lens ages or is damaged, it can become cloudy as proteins clump together. The light is scattered by the cloudy lens before it reaches the retina, which distorts the image. It is the leading cause of vision impairment and one of the leading causes of blindness in the United States. The type of cataract is determined by the location: cortical, nuclear, and posterior subcapsular. Nuclear and cortical cataracts form in the portion of the lens their adjective denotes. Posterior subcapsular are present anterior to the posterior capsule. Cortical and nuclear cataracts are most commonly associated with aging and UV radiation. Congenital cataracts can appear at birth or during early childhood and can be nuclear, cortical, or subcapsular. The risk factors associated with congenital cataracts are a prenatal infection and a family history (specific genetic mutations). Anterior polar cataract, specific type of congenital cataract can be spontaneous or familial. Early stage treatment of cataracts is with corrective lens; later as vision affects daily activities, surgery is performed to replace the lens that significantly improves vision. This is considered a preventable cause of blindness and vision impairment.

Figure 7: Slit-lamp view of human cataract.
Epidemiology

Cataracts cause low vision in 59% of white individuals, 51% of black individuals, and 47% of Hispanic individuals. It causes blindness in 9% in white individuals, 37% in black individuals, and 14% in Hispanic individuals. Females tend to have a higher prevalence of cataracts than males at 61% to 39%, respectively. The aging population is at a higher risk of developing cataracts with 50% of persons affected over the age of 75.

Risk Factors

There are various risk factors associated with developing cataracts that include environmental and genetic factors. As a person ages, the risk of developing cataracts increases. Exposure to UV radiation from not wearing outdoor eye-protection or exercising outside increases the chances of developing cataracts. Increased duration of exercise is also associated with cataracts due to the production of free radicals and exposure to UV radiation leads to oxidative stress. Females have a higher prevalence of cataracts. Those who currently smoke, or previously smoke cigarettes are at a higher risk. A diet low in antioxidants may contribute to the development of cataracts due to lack of nutrients in body to minimize oxidative stress. Trauma to the eye, including previous surgery, and a variety of adverse effects of medications, corticosteroids, chlorpromazine, and other phenothiazine-related medications. Systemic diseases such as diabetes and hypertension are also associated with cataracts. Myopia and iron deficiency anemia, high TIBC levels, are risk factors for cataracts. Different genetic mutations predispose individuals to the development of cataracts. Posterior subcapsular cataracts occur mainly in the younger population and associated with prolonged corticosteroid use, inflammation, diabetes, and trauma.

Diagnosis

Diagnosis and grading of cataract is accomplished using a slit-lamp tool and classifying via the Lens Opacification Classification System III (LOCS). The system uses different slit-lamps images to grade nuclear, cortical, and posterior subcapsular cataract.

Pathogenesis

The formation of cataracts is not fully understood and is most likely due to the interaction of environmental, genetic, nutritional, and systemic factors. Lens proteins are not replenished throughout the life of the lens and as we age, the proteins unfold, especially in the central portion. Oxidative stress is highly implicated in the pathophysiology which is accumulated as the lens ages and is exposed to different environmental factors. The antioxidant, Glutathione (GSH), prevents oxidation of the lens, but as the lens ages the levels of GSH decrease. As a result, the levels of disulfides increase that leads to an increase in oxidative stress. GSH levels decrease because lens proteins are not replenished and the diffusion of GSH through the cortical and nuclear portion of the lens decreases with time. A chaperone protein, α-crystallin, prevents
denatured proteins from precipitating and clumping together. There is only a finite amount of α-crystallin in each lens and if mutations occur, it can lead to the development of cataracts.

Signs and Symptoms

Patients may complain of a glare, loss in contrast, painless blurring, or needing more light to see. Those with presbyopia may be able to read without glasses. Also, those with hyperopic eyes (farsighted) may experience a “second sight” as they are able to read without glasses. Difficulty driving, especially at night due to red/green disability glare (DG) is observed by those with cataracts. Those with presbyopia may also experience a similar phenomenon. This is most common in nuclear cataract. Posterior subcapsular cataract typically experience disproportionate vision loss.

Treatment

Corrective lenses are prescribed throughout disease progression. A diet high in anti-oxidants such as Vitamin C and manganese can be beneficial in slowing the progression. Surgical options including replacing the lens with a pseudophakia, artificial lens, via small incision cataract surgery (ICCE) or extracapsular cataract surgery (ECCE). ICCE is an older version of cataract surgery that removes the entire lens. This surgery is performed when ECCE is contraindicated and mainly in developing countries. ECCE is done using phacoemulsification with intraocular lens (IOL) implantation. Phacoemulsification is the lens being broken down into smaller pieces by an ultrasonic hand piece and aspirated from the eye. The replacement lens may be a multifocal or unifocal intraocular lens. Those with multifocal IOL are less likely to be spectacle dependent; however, some multifocal patients underwent a secondary surgery to exchange IOL. Current IOL technology has revolutionized cataract surgery by reducing dependence on spectacles for those with significant refractive error. “Secondary cataract” may occur after surgery that involves clouding of the lens. This occurs in 50% of patients and can occur months to years’ post-surgery.

Eyes with co-morbidities are commonly treated using the same techniques as eyes only affected by cataract. Treatment of eyes affected by cataract and glaucoma may or not be treated simultaneously. Combined cataract and microinvasive glaucoma surgery (MIGS) are common in patients with both glaucoma and cataracts, as IOP transplantation and phacoemulsification can be done at the same time as MIGS. MIGS can significantly improve quality of life of glaucoma patients by taking the place of topical medications that cause severe adverse effects. (Patrick Scott, O.D., email communication, March 5, 2019.) Fuch’s Corneal Dystrophy and cataracts are commonly treated simultaneously due to the probability of cataract surgery leading to worsening of Fuch’s dystrophy.

Overall an increase in dynamic vision is observed after cataract surgery and overall increase in quality of life. Post-surgery visual acuity is best predicted by the health of the optic nerve and retina, rather than the opacity of the lens. A systematic review by Riaz, found in studies comparing ECCE and phacoemulsification group, the phacoemulsification patients demonstrated greater improvement visual acuity than the ECCE patients. The ECCE patients also experienced...
higher rates of astigmatism and higher complications during surgery. Those with glaucoma and age-related macular degeneration also retain improvement in vision after surgery.

Glaucoma

Overview

Glaucoma is a progressive degeneration of the optic nerve due to elevated or normal intraocular pressure that can be distinguished by its characteristic cupping of the optic nerve. The determining factor for developing glaucoma is how retinal ganglion cells respond to stress, an increased intraocular pressure and/or lack of blood supply to the optic nerve. Elevated IOP is not necessary to cause optic neuropathy and may be caused by a specific combination of connective tissue geometry, blood supply, and reactivity to IOP. There are categories of glaucoma are primary open angle (POAG), primary angle-closure (PACG), pediatric glaucoma, and secondary glaucoma. POAG is characterized by improper drainage of fluid through the trabecular meshwork that results in a characteristic cupping of the optic nerve. PACG is caused by a small angle between the iris and cornea that prevents drainage of fluid that results in an acute increase in IOP. Glaucoma causes visual field deficits and eventual irreversible blindness if left untreated. PACG is three times more likely to lead to blindness than POAG. Pediatric glaucoma is split into congenital, infantile, and juvenile according to age of onset and is caused by angle deformities of the eye. Secondary pediatric glaucoma can be due to angle anomalies (Sturge-Weber syndrome, Aniridia, anterior segment dysgenesis), retinopathy of prematurity, aphakia, intraocular inflammation, ocular tumors, trauma, and glucocorticoids. Secondary glaucoma is due to other diseases or trauma processes such as pigment dispersion glaucoma, pseudoexfoliation glaucoma, etc. Treatment varies according to the type of glaucoma.

Epidemiology

As of 2014, glaucoma affects approximately 3 million Americans and 64.3 million people worldwide. By 2020, an estimated 3.4 million people within the United States will have glaucoma. POAG and PACG are both age dependent, primarily affecting those 75 years of age and older. Women are slightly more affected at 55% of cases, some studies have found not found an association between gender and glaucoma. POAG is most common in those of African descent and second most common in Hispanics and third in white persons; however, PACG is most common in persons of Asian descent. Daily functioning is negatively affected by glaucoma with an increased incidence of driving accidents, falls, and over-all quality of life and daily activity difficulties. Those with glaucoma are over three times more likely to have fallen in the last year and six times more likely to be involved in a traffic accident and be at fault. Congenital glaucoma occurs in 1.46 per 100,000 children and occurs in infants and children. The incidence varies according to ethnicity.
Risk Factors

The different types of glaucoma vary in their respective risk factors. Primary open angle and closed angle glaucoma are both associated with increased age. Family history of the disease is associated with POAG, PACG, and pediatric glaucoma. Primary open glaucoma is associated with African ethnicity, post-menopause for women, myopia, and increase in IOP. Systemic diseases are associated with POAG: type II diabetes, hypertension, and cardiovascular disease. Thinner central corneal thickness and disc area are risk factors for the development of POAG. Primary angle closure glaucoma is associated with specific anatomical features of the eye including: crowded anterior segment, shallow anterior chamber depth, thicker and anteriorly positioned lens, and short axial length. Women and of Asian ethnicity are risk factors for PACG. Recent exposure to certain antidepressants drugs such as Topiramate, TCAs, low-potency antipsychotics, and, to a lesser extent, and SSRIs. Family history is significant as a risk factor for pediatric glaucoma as the CYP1B1 gene is associated defects in angle development of iris to cornea. This is not seen in all cases. Prenatal infection may be a risk factor.

Pathogenesis

POAG has a reduced flow of the aqueous humor due to the degeneration and obstruction of the trabecular meshwork. As aqueous humor builds up, the IOP increases. For PACG, angle between the iris and the cornea, iridocorneal angle, is partially or completely closed leading to the buildup of aqueous humor. Pediatric glaucoma can be due to improper development of the trabecular meshwork or iridocorneal angle leading to RGC death and increase in IOP. The relationship between the structural and function observed in glaucoma are complex with conflicting studies showing one change precedes the other. Both structural and functional changes are critical to the assessment and treatment of the disease.

The exact disease process leading to RGC death is unknown. The two major theories focus on the mechanical dysfunction of the cribiform plate and vascular dysfunction causing ischemia that may lead to optic neuropathy. Both, POAG and PACG can increase IOP which may displace the lamina cribosa (forms bottom of optic cup, LC). The LC is posteriorly displaced and thinned which disrupts axonal transport and causes mechanical axonal damage. This may lead to the characteristic cupping seen in glaucoma patients. Cupping is an increased disc to cup area due to optic neuropathy. Astrocytes found in POAG patients have decreased expression of angiogenic factors compared to normal astrocytes; therefore, do not contribute to the same degree to the remodeling of the LC. Vascular dysfunction may be due decreased angiogenesis, generation of new blood vessels, and production of reactive oxygen species. Hypertension also plays a role in the inadequate blood supply by damaging blood vessels due to the high blood pressure. The decrease in blood supply and an impairment in the mitochondria may lead to an increased dependence on glycolysis which produces reactive oxygen species. Reactive oxygen species can cause retinal ganglion cell apoptosis (programmed cell death). Normal tension glaucoma is most likely due to vascular insufficiency, since there is not an elevation in IOP. The pathogenesis of glaucoma could also be due to estrogen metabolism, immune-mediated nerve damage, or deprivation of neuronal growth factors.
Secondary glaucoma is classified according to the known cause of increased IOP such as uveitis, trauma, pigment dispersion, pseudoexfoliation, glucocorticoid therapy, and vasoproliferative retinopathy. Uveitis is the inflammation of the uvea, middle portion of the eye including the iris, cornea, and choroid. A complication of uveitis is raised IOP. Pigment dispersion secondary glaucoma may occur when the pigment located on the iris comes off and blocks the drainage canal. Pseudoexfoliation glaucoma is the most common cause of secondary glaucoma and occurs due to an excess production of a protein found in the eye that can clog the trabecular meshwork. Proliferative retinopathy (neovascular glaucoma) can lead to the development and release of VEGF factors that can affect the anterior chamber of the eye. VEGF factors can lead to the neovascularization of the iris that may eventually grow into the anterior chamber angle narrowing the aqueous outflow and increasing the IOP. (Patrick Scott, OD., email communication, March 5, 2019)

Signs & Symptoms

Glaucoma is considered a silent stealer of sight because early signs and symptoms are uncommon or go unnoticed by patients, especially POAG. Peripheral vision is lost first and gradually progresses to central vision loss. Early complaints may be missing steps (loss of inferior visual field), missing portion of words while reading, or difficulty driving. PACG, specifically acute ACG, patients present with an extreme headache with distorted vision, severe eye pain, eye redness, vomiting, and halos around light. Hand movement can be detected and will experience pain on eye movement. Pupils are mid-dilated and non-reactive in acute ACG.

Diagnosis

Patients with an abnormal fundus examination and/or risk factors for glaucoma should be examined by an ophthalmologist or optometrist. The appearance of the optic nerve demonstrates the characteristic cupping found in glaucoma and should be visible on a fundus examination by the primary physician. Typically, a cup that is fifty-percent of the vertical disc diameter is indicative of glaucoma, but presence of cupping is not the sole diagnostic tool. The fundoscopy exam may also display thinning, pitching and/or notching of rim, fiber layer hemorrhage, vertical elongation of the cup, increased disc to cup ratio, and quick angulations of exiting blood vessels. The gonioscope is used to measure the iridocorneal angle and Goldmann applanation tonometry measures the IOP (assumes average corneal thickness). The Goldmann applanation may underestimate IOP if corneal thickness of a patients is lower than average. An IOP measurement above 23-24 mmHg requires at least another measurement or follow-up. A pressure above 40 mmHg is considered an emergency. PACG typically presents as a cloudy cornea and ciliary flush. Slit-lamp findings include corneal edema, narrow anterior chamber, synechiae (iris adhering to cornea or lens), and irregular pupil shape or function. Functional changes occur prior to structural changes, so visual field deficits may be present before the optic nerve head displays degeneration. Visual field deficits can also be applied to diagnose glaucoma using automated perimetry technologies or brain computer interface. Newer technologies are being applied such as Optical coherence tomography, OCT, that detects certain features of the optic nerve head such as retinal nerve fiber and ganglion cell analysis. Diagnosis is determined by fundoscopy, visual field, OCT, corneal thickness, and gonioscopy.
Treatment

Vision loss due to glaucoma is irreversible due to the inability to regenerate optic nerve loss. The main treatment is to decrease IOP, including normal tension glaucoma. Treatment for acute ACG is time sensitive because significant damage can occur in an hour. Alpha-agonists, carbonic anhydrase inhibitors, miotic agents, rho kinase inhibitors, prostaglandin analogs or beta-blockers are the most common drugs and is administered topically with passive eyelid closure. Medical therapy is the primary treatment unless ineffective at controlling IOP or preventing progression. Microinvasive glaucoma surgery (MIGS) is a new alternative to topical medication as it is associated with few complications, particularly when compared to topical medications. MIGS does not lower IOP drastically; however, takes the place of a topical medication that requires patient compliance and associated with adverse consequences. MIGS is a collection of procedures to control aqueous humor outflow with the insertion of an implant or surgical manipulation for those with mild to moderate glaucoma. Different MIGS exist depending on mechanism of action to control aqueous humor outflow. MIGS is typically done at the same time as cataract surgery. Progression is common due to the high costs and difficulty for older patients to follow the regimen. Patients at increased risk of progression are those diagnosed at an older age at baseline and higher IOP at baseline, access to care, initial vision worse than 20/40, and thinner corneal thickness. Vision loss is irreversible, so prevention is paramount. The majority of patients diagnosed with glaucoma will not go blind if treated. Patient compliance with treatment is crucial to prognosis.

Surgery is performed if medication is ineffective or severe vision loss occurs. Surgical options include laser trabeculoplasty, argon or selective, laser peripheral iridotomy or microinvasive glaucoma surgery (MIGS). Both laser trabeculoplasty options increase permeability of the trabecular meshwork. Argon laser trabeculoplasty is considered sooner in those with pseudoxefoliation or pigmentary glaucoma. Iridotomy is the surgical option for acute ACG. Trabeculectomy is considered if other options have failed to control IOP. It creates a hole in the iris allowing passage of the aqueous humor past the papillary block or damaged trabecular meshwork. Gene therapy, stem cell transplantation, and other neuroprotective and regenerative treatments are emerging to hopefully reverse optic neuropathy. Regarding secondary glaucoma’s, the underlying cause should be treated in conjunction with lowering IOP.

Age-Related Macular Degeneration

Overview

Age-Related Macular Degeneration (AMD) is the leading cause of legal adult blindness and vision impairment. AMD is the decay of a specific region of the retina known as the macula. The macula has the highest density of cones hence is responsible for central vision. Central vision is necessary for daily activities such as driving, reading, recognizing faces, watching TV, etc. Vision loss due to AMD is irreversible. There are two pathologic types: non-exudative (dry) and exudative (wet) AMD. Dry AMD compromises ninety-percent of all cases and is characterized by drusen deposits in the retinal pigment epithelium, RPE, and Bruch’s membrane. Drusen deposits are the earliest sign of AMD and are composed of vitronectin, amyloid P, apolipoprotein
Advanced dry AMD, referred to as geographic atrophy, is characterized by the decay of the retina, specifically the RPE cells and area other than the macula. Wet AMD is the more advanced form and compromising ten-percent of all cases. Wet AMD is the primary cause of severe vision loss observed in AMD. Exudative AMD is characterized by the formation of new blood vessels on the macula, also known as choroidal neovascularization. The pattern of neovascularization can be categorized into classic, occult, or fibrous lesions. Classic has well-defined borders with more leakage of fluid and occult has indistinct borders with less leakage of fluid. AMD is difficult to prevent and progression and overall prevention of vision loss. Geographic atrophy does not have an effective treatment, some new treatment options are in clinical trials. Wet AMD can be treated with anti-VEGF injections.

Epidemiology

An estimated 2.95 million Americans will be affected by AMD by 2020. AMD is the leading cause of blindness in white persons, responsible for fifty-four percent of blindness in white persons. The prevalence rates of AMD ranged from 2.4-5.4% in the US population with the highest rate in white and Asian persons and lowest in Black persons. Early AMD prevalence rates increase up to approximately 16% in white and Asian persons of 75 years of age and older. Late AMD has a prevalence rate of 0.3-1% in all racial/ethnic groups. The disease is age-specific, disproportionately affecting those seventy-five years of age and older. Some studies have found women are more than twice as likely to develop AMD, though some studies have not found a significant difference. A predicted increase in prevalence is expected in 2050 but may be mitigated with current and new treatment options.

Risk Factors

Age-related macular degeneration is associated with a combination of genetic and environmental risk factors. Modifiable risk factors include smoking, increased body mass index, lower level of physical activity, and low antioxidant intake. Those 75 years of age and older are more prone to develop AMD. A diastolic pressure greater than 95 mmHg and those prescribed anti-hypertensive medication are more likely to develop wet AMD. Cardiovascular disease and UV radiation are risk factors. A history of AMD within a family is indicative of developing AMD.

Pathogenesis

Vision loss occurs when the photoreceptor cells (vision cells) die due to degeneration of the RPE or the effects of choroidal neovascularization. Degeneration may be due to oxidative stress and/or inflammation of the RPE and Bruch’s membrane.

Dry AMD is characterized by the formation of drusen deposits in the RPE and Bruch’s membrane and progressive loss of the RPE. Abnormalities of Bruch’s membrane, inflammation, aging, oxidative stress, and chronic infection may all contribute to the development of AMD. RPE and photoreceptor death could be caused by ischemia due to insufficient blood flow through Bruch’s membrane and choroid that differentially affects the macula. The decline in perfusion may be due to age-related tissue degradation, hypertension, or diet-related effects on the
Vascular endothelial growth factor, VEGF, is the primary cause of CNV. VEGF promotes the growth of new blood vessels to counteract the lack of perfusion which inadvertently causes the loss of photoreceptors cells. This is the primary target for treatment of exudative AMD.

Signs and Symptoms

Early AMD is often asymptomatic with early complaints of gradual loss of vision in one or both eyes. Those with AMD experience central vision loss and is commonly reported as difficulty reading, driving, and facial recognition. Faces often appear blurred or distorted, difficulty recognizing identity, emotional states, and facial expressions to those with AMD. The effects of vision loss are detrimental to quality life apparent in increased incidence of traumatic hip fractures and depression in those with AMD.

Central vision loss, specifically high contrast visual acuity and contrast sensitivity are associated with vision related quality of life (VRQoL). Wet AMD may present with acute central vision loss and metamorphopsia. Metamorphopsia is distorted vision when looking at a grid of straight lines, with some lines appearing wavy and some appear blank; commonly seen when looking at window blinds or using the Amsler grid.

Figure 8: Fundus image of the intermediate stage of AMD. Drusen deposits are visible as the yellow circles on the retina.
Diagnosis

The primary care physician is often the first to hear the complaint of vision disturbance. Ophthalmic evaluation is necessary to diagnosis and differentiate dry and wet AMD. Nonexudative AMD will display drusen deposits on dilated eye examination. Five or more and at least 63 µm drusen deposits are typically present. Geographic atrophy may present as round or oval patches of depigmentation. Increased pigmentation with RPE mottling may also be present. A dilated eye exam displaying exudative AMD reveals subretinal fluid or hemorrhage. CNV appears as grayish-green discoloration of the macula and a fluorescein dye retinal angiography is necessary. Treatment is influenced by the specific results of the fluorescein dye retinal angiography. Optical coherence tomography, OCT, produces high-resolution images of the retina that shows retinal edema and subretinal fluid. Fundus autofluorescence can be used to stage and track the progression of geographic atrophy.

Treatment

Nonexudative AMD progression can be delayed by lifestyle changes, such as an addition of antioxidant vitamins through a healthy diet or supplement. This effect is only observed in those with moderate or advanced AMD receiving high levels of zinc and antioxidant supplementation. Genotyping of risk alleles does not alter treatment options. Vision loss may not be substantial if the fovea is not affected by geographic atrophy. The projected number of cases in 2050 is 25% lower in antioxidant-receiving scenarios. There is not an effective treatment to prevent the onset or progression of geographic atrophy. Ineffective or unproven therapies include: laser therapy, statin therapy, and stem cell therapy.

Exudative AMD is targeted with VEGF inhibitor, vascular endothelial growth factor, injections. Anti-VEGF drugs are bevacizumab, Avastin®, ranibizumab, Lucentis®, or aflibercept, not typically used in the United States. Periodic injections help prevent new formation of blood vessels on the choroid. A continuous treatment regimen is associated with better visual outcomes compared to treatment as needed. Risk of a systemic serious adverse events was estimated at 22.2% with ranibizumab and with bevacizumab of 24%. Overall not a significant difference in risk between the two drugs. Bevacizumab (Avastin®) and ranibizumab (Lucentis®) administered monthly gained 8.0 and 8.5 letters, respectively. Research into future therapies to prevent progression of vision loss is still needed. An estimated moderate vision loss occurs 6.0% and severe vision loss in 5.4% in persons with AMD during 10-year period. Photodynamic therapy, PDT, is recommended for patients who cannot be treated with VEGF inhibitor injections. PDT involves the injection of a dye prior to photo-activating laser that targets neovascularization. Zinc with antioxidant supplements is indicated for those with wet AMD. No effective treatment for geographic atrophy exists, but clinical trials are currently in the process.

Once vision loss occurs, patients should be referred to a low vision specialist and visual rehabilitation centers and using a variety of visual aids. Closer-circuit visual training, CCVT, and eccentric training can help improve performance in daily activities such as reading, cooking, shopping. CCVT, which magnifies images electronically, is associated with a greater increase in
reading speed and more complex activities. Eccentric visual training is the process of looking slighting away from the subject to use peripheral vision rather than central vision. 120

Diabetic Retinopathy

Overview

Diabetic Retinopathy (DR) occurs when chronically elevated glucose levels damage the blood vessels in the retina and is associated with Type I, Type II, and gestational diabetes. Vision loss associated with DR is due to leakage and/or hemorrhage of blood vessel and is the leading cause of incident blindness in those 20-74 years of age. 121 Diabetic Retinopathy is present in about 35% of all diagnosed diabetic patients and almost all diabetic patients will develop some form of retinopathy within 10-15 years of diagnosis. Vision loss typically occurs due to macular edema, hemorrhage from new blood vessels, retinal detachment, neovascular glaucoma. The presence of this disease may indicate micro-circulatory dysfunction elsewhere in the body. There are two types of DR with varying stages: non-proliferative, NPDR, and proliferative, PDR. NPDR is characterized by retinal vessels microaneurysms and retinal hemorrhages. NPDR is divided into 3 stages that indicates the risk of progression and treatment strategies. PDR is characterized by neovascularization from the optic disc and/or retinal vessels that can lead to vitreous hemorrhage, subsequent scaring, and tractional retinal detachment. Macula edema is due to the leakage of fluid and retinal thickening, specifically at the macula: can occur at any stage of DR. Early detection of DR is essential to prevent severe vision loss due to inability to reverse damage caused. DR is considered a preventable cause of blindness. 121,122,123,124

Epidemiology

Studies estimate that 28.5–40.3 % of patients with type 2 diabetes have DR, and 4.4–8.2 % of them have vision threatening diabetic retinopathy. 123,125,126 Type I diabetics are more likely to develop DR, present in 75-82%, and vision threatening DR is present in approximately 31%. Prevalence of diabetic retinopathy and diabetic macular edema was significantly higher in blacks and Hispanics compared to whites at approximately 39%, 34%, and 26%, respectively. 127,128 Incidence of DR in a community setting is estimated to be 18.8-28%. 129,130,131 Retinopathy progression over a 5-year period is approximately 26% and progression to PDR was approximately 4%. 132 The incidence and progression of diabetic retinopathy seems to be declining, possible due to current intensive glycemic and blood pressure control. 123,124,133

Risk Factors

Risk of diabetic retinopathy increases as duration of diabetes increases. 134,135,136 Type I may be at an increased risk, especially with a history of smoking. 127,137 Poor glycemic control, measured by elevated glycosylate hemoglobin HbA1c levels, leads to the development of DR. Higher diastolic blood pressure, poorly controlled blood pressure, 138 and high levels of blood-lipid levels are associated with DR. 139 Smoking, 137 cardiovascular disease, 140 higher body mass index, 135 and sleep disturbances place those with diabetes at an increased risk. Sleep
disturbances include: obstructive sleep apnoea sleep deprivation, excessive daytime sleepiness, and excessive sleep duration.141,142

Pathogenesis

The disease process begins as NPDR, characterized by increased capillary permeability, microaneurysms, hemorrhages, exudates, macular ischemia, and macular edema. As the disease progresses, new blood vessels form to counteract retinal ischemia. Chronically elevated glucose levels damage the tiny blood vessels within the retina, specifically fundus vessels, which cause them to leak fluid, dilate, or rupture. Hyperglycemia damages all retinal cells including vascular, neurons, and glial cells.143 Intensive insulin treatment that obtains a mean glycosylated hemoglobin level lower than other treatment options, reducing the incidence of new cases of DR by approximately 76%.144,145 Chronic hyperglycemia causes three main mechanisms that induce retinal vascular injury: hormonal, biochemical, and hemodynamic. Hormonal mechanism. Increased sorbitol production and glycosylation, breakdown of glucose, associated with increase in glucose can lead to increased oxidative stress.146,147 An increase in retinal blood flow is initiated by hyperglycemia and induces sheer stress on retinal blood vessels that may lead to macular edema.148,149 Before any clinical signs are observed, alterations in retinal blood flow have been observed and HbA1c is a determinant factor of angiogenic cytokines such as FGF-1, helps maintain vascular tone, and vascular endothelial growth factor (VEGF).150 The release of growth factors, vascular endothelial growth factor (VEGF), IGF-1, and platelet-derived growth factor (PDGF) is initiated by retinal ischemia. Additional pathways have been proposed that cause retinal damage such as the polyol pathway flux, activation of diacylglycerol- (DAG-)PKC pathway, activation of the renin-angiotensin-aldosterone system (RAAS), and inflammation.151 The formation of new blood vessels and ischemia on the vitreous surface may lead to chronic inflammation. Inflammation may lead to leakage from dilated hyperpermeable blood vessels causing the breakdown of the retinal-blood barrier allowing the entry of lipid-protein into the retina.152 Elevated carbonic anhydrase levels are associated with hyperpermeable vessels.153 Characteristic lesions and exudates are seen as a result of the inflammation process. The complete pathogenesis pathway of diabetic retinopathy is continuing to be discovered.

Signs and Symptoms

Non-proliferative diabetic retinopathy can be asymptomatic in the initial stages. Floaters, blurred visions, periods of decreased vision, distortion, flashes of light (photopsia) are presenting features of DR.154 Vitreous hemorrhage typically causes floaters. Macular edema is the main cause of blurring vision. Clinical signs include capillary microaneurysms, dot and blot retinal hemorrhages, hard exudates, venous loops and beading, and cotton wool spots (soft exudates). Rupture of microaneurysms produces dot and blot retinal hemorrhages. Hard exudates suggest chronic edema and venous loops and beading are predictive of progression. Clinical signs of proliferative diabetic retinopathy include vitreous hemorrhages, fibrovascular tissue proliferation, and traction retinal detachment.139
Figure 9: Fundus image displaying macular edema, a common clinical finding in diabetic retinopathy. May cause blurred/distorted vision.¹⁵⁵

Figure 10: Fundus image of proliferative retinopathy. The formation of new blood vessels are visible around the optic disc.¹⁵⁶

Diagnosis

Fasting glucose and hemoglobin A₁c values are obtained along with fundoscopy exam, fluorescein angioscopy, optical coherence tomography (OCT), and B-scan ultrasonography to aid in diagnosis. Fluorescein angioscopy is used to document leaky or non-perfusing blood vessels. Dot and blot hemorrhages can be distinguished from microaneurysms. New blood vessels are categorized according to presence, location, severity, and hemorrhagic activity. OCT generates an image of the retina that displays retinal thickness and swelling. Macular edema is best visualized with OCT and fluorescein angioscopy. B-scan ultrasonography is useful to detect vitreous hemorrhage. Macular edema presents with yellow exudates, profuse leakage, and thickened macula.¹³⁹
Treatment

Proper treatment and screening can hopefully prevent vision loss. Intensive glycemic control, blood pressure control, and serum lipid levels is beneficial for the prevention and progression of DR. Intensive insulin therapy can cause a short-term worsening of diabetic retinopathy as insulin upregulates expression of VEGF and IGF-1. The long-term effects of tightly controlled glycemic control outweighs the initial worsening of DR due to insulin. Hemoglobin A1c levels are recommended to be kept lower than or equal to 7%. The American Diabetes Association recommends systolic and diastolic pressures to kept under 140 mmHg and 90 mmHg, respectively. Lipid-lowering therapy is not proven to prevent DR.

Mild and moderate NPDR is typically not treated due to lack of vision loss. Macular edema, macular edema with NPDR, and PDR are treated with laser photocoagulation therapy and anti-VEGF agents. Laser photocoagulation therapy is effective in preserving vision for patients with high-risk or severe PDR without macular edema. In diabetics with severe or very-severe NPDR with a high risk of progression, early photocoagulation is beneficial prior to vision loss. This treatment option is more durable and does not require multiple follow-up injection as in anti-VEGF treatment. Not recommended for eyes in the mild or moderate stage due to adverse effects of photocoagulation outweigh the benefits. Anti-VEGF drugs have been approved by the FDA to treat DR for compliant patients who are typically high-risk and severe proliferative DR with macular edema. Anti-VEGF agents are injected into the vitreous cavity using a needle and is short-term lasting 4 to 6 weeks. Continuous anti-VEGF injections rather than laser photocoagulation can be more effective in treating macular edema. Cessation of treatment, progression and/or reoccurrence can occur. Vitrectomy is indicated if vitreous hemorrhage cannot be cleared or prevents photocoagulation, or tractional detachment involving the macula. Vitrectomy is the removal of the vitreous humor to allow better visualization of the retina, remove opacities, and release traction to reverse a detachment. Progression of DR can be prevented, but risk of progression increases with increased severity. One-year risk of progression to PDR for mild, moderate, and severe are 5%, 15%, and 52-75%, respectively. A 25-year cumulative incidence rate of progression of DR was 83%, incidence of PDR 42%, including all age groups. Women with diabetes are at a high-risk for progression of DR with poor glycemic control; however, this is not associated with long-term risk of progression.
Keratoconus, Pellucid Marginal Degeneration, & Post-Surgery Corneal Ectasia

Overview

Keratoconus (KC), pellucid marginal degeneration (PMD), and post-surgery corneal ectasia are all non-inflammatory corneal ectasia disorders characterized by bulging and protruding of the cornea. Keratoconus is a non-inflammatory disorder characterized by a thinning and cone-shaped protrusion of the cornea. Presents as decreased visual acuity and frequent corrective lens changes due to progressive myopia, near-sightedness, and irregular astigmatism. Pellucid marginal degeneration is a slow degenerative disorder that commonly targets the inferior peripheral cornea and forms a crescent shape. It is commonly mistaken for Keratoconus. Pellucid marginal degeneration typically presents later in life and progresses slower than keratoconus. Both diseases can present together, are bilateral, and eyes are commonly seen with both. Post-surgery corneal ectasia is rare and may occur after LASIK.

Epidemiology

Corneal ectasia disorders are relatively rare. Incidence rate for keratoconus varies from 2 per 100,000 to 1 in 7,500. The prevalence rate is between 54 per 100,000 to 265 per 100,000. The occurrence of keratoconus is age specific with appearance at puberty or early-adulthood. There is no difference between incidence or prevalence rate between genders. A higher prevalence may be found in Asians, blacks, and Latinos than whites, but one study found confounding evidence. PMD is a rare disease that is more common in males. It affects all ethnicities and demonstrates no geographical predisposition. Post-surgery corneal ectasia occurs after 0.04-0.6% LASIK surgeries. LASIK and photorefractive keratectomy surgery accounts for 96% and 4% of secondary ectasia cases.

Risk Factors

Systemic disorders such as Down syndrome, Ehlers-Danlos syndrome, and osteogenesis imperfect are associated with an increased risk of Keratoconus. Eye rubbing and contact lens, especially rigid lens, are associated with an increase in occurrence of KC. Atopic disease including allergies, asthma, eczema, and hay fever may predispose persons to developing KC. The prevalence in first-degree relatives with KC is 3.4% compared to the general population of 0.23-0.05% indicates a family history may be a significant risk factor. A family history is also a significant risk factor for PMD. Risk factors for post-surgery corneal ectasia include abnormal pre-surgery topography, younger age, and high myopia. Abnormal pre-surgery topography may be a low residual stroma bed thickness and poor pre-surgery corneal thickness.

Pathogenesis

Keratoconus is due to unknown etiology, but protrusion of the cornea is most likely due to the increased intraocular pressure on the thinner portion of the cornea. Patients with KC have a
decrease in collagen content of the cornea which is most likely due to a multifactorial, multigenic disorder. The etiology of the thinning of the cornea and decrease in collagen content is unclear. Reduced protein synthesis or increased degradation implicated in a family history may cause the changes in the molecular changes. The pathophysiology of PMD is most likely similar to Keratoconus. Post-surgery corneal ectasia may be due to a lack of corneal wound healing that causes the cornea to bulge, predisposition to disease process that causes corneal bulging, residual bed is thin pre-surgery, or overtreatment causing instability of the cornea. The corneal ectasia disorders may be clinical presentations of the same disease.

Signs and Symptoms

Keratoconus patients typically present with asymmetric visual complaints as one eye may progress faster than the other. Difficulty correcting vision due to progressive myopia and astigmatism. Munson’s sign is a v-shaped indentation of the lower eye-lid when gazing down. Corneal hydrops occurs in 3% of patients and presents as photophobia, sensitivity to light, and sudden painful decrease in visual acuity. Pellucid Marginal Degeneration patients complain of a gradual progressive loss in visual acuity. Astigmatism is irregular and against-the-rule-astigmatism. Corneal hydrops and acute corneal perforation are less common in PMD patients. Post-surgery corneal ectasia have a history of LASIK or photorefractive keratectomy surgery.

Figure 11: Keratoconus cornea displaying Munson’s sign

Diagnosis

Diagnosed by history and clinical examination. The cornea may appear normal with slit-lamp examination. Slit-lamp may demonstrate Fleisher ring, Vogt straie, corneal scarring, and/or prominent corneal nerves. Fleisher ring is a brown-colored staining around the base of the cone of the cornea. Vogt straie are vertical stress lines in the thinnest portion of the cornea and disappear with gentle pressure. Corneal scarring may appear as central and inferior paracentral thinning. Prominent corneal nerves should prompt further examination. PMD presents similarly to KC using slit-lamp exam, particularly in later stages of the diseases. Retinoscopy may demonstrate a scissoring reflex, a sign during early development where two light bands can be seen moving towards and away from each other. Corneal topography is useful for diagnosis,
but not examining progression. PMD may appear like a “butterfly”, “kissing doves”, or “crab-claw” using corneal topography. 167, 187

Distinguishing KC from PMD can be difficult. Keratoconus typically presents with signs and symptoms decades earlier in life than PMD. In PMD, the cornea is inferiorly displaced; however, when a keratoconus is also inferiorly displaced it is difficult to distinguish between the two disorders: this distinction is not always reliable. 187, 188 PMD is characterized by a narrow, clear band of corneal thinning around 1 or 2 mm in width PMD which extends from the 4-o'clock position to the 8-o'clock position. 167 Corneal topography is the main exam to distinguish PMD from KC. 187

Treatment

Correction of vision due to corneal ectasia disorders is the paramount goal in treatment is primarily treated with spectacles and contact lens. Hybrid contact lens may be suitable for those intolerant to gas permeable contact lens. Correcting vision is typically more difficult for those with PMD. 189 Surgery is only for patients who have poor visual acuity with corrective lens, contact lens intolerability, and corneal hydrops. Collagen cross-linking is a prevention treatment for progression and prevention of surgery. Worse prognosis of disease is associated with younger age at onset of KC, corneal scarring, and worse visual acuity. 175, 190 Treatment options for KC, PMD, and post-surgery corneal ectasia are the same, but are indication may differ.

Surgical options include intrastromal corneal ring segments and keratoplasty. Intrastromal corneal ring segments is a reversible safe and effective insertion of an implant into the cornea to maintain a regular shape. Indicated for early keratoconus, PMD, and post-surgery corneal ectasia. 191, 192 A significant improvement in visual acuity is observed but no improvement in astigmatism. 191 Keratoplasty, most commonly is the penetrating keratoplasty, is a corneal transplant and 10-15% of patients undergo a keratoplasty. 190, 193 Good visual and refractive outcomes with few complications have been observed. 194 Variations of penetrating keratoplasty with similar results are microkeratome-assisted lamellar keratoplasty and deep anterior lamellar keratoplasty (DALK). DALK is newer and more technically challenging but may have less complications and faster visual rehabilitation. If DALK experiences complications, surgery is upgraded to penetrating keratoplasty. 195, 196

Collage cross-linking is accomplished using combined riboflavin and ultraviolet A irradiation (UVA) to increase cross-linking between corneal fibers to prevent progression of the KC and PMD. In a randomized, controlled multicenter study of Keratoconus patients, improvement in maximum keratometry value (corneal thickness), corrected and uncorrected visual acuity were observed. 197, 198 Collagen cross-linking is not recommended for KC patients with a minimum corneal thickness of 400 microns, maximal keratometry less than 60 D, and must have no other corneal diseases (particularly herpes infection). 199 Cross-linking may be done in conjunction with surgery. 200
Hypertensive Retinopathy

Overview

Chronic systemic hypertension damages arteries within the retina that can lead to hypertensive retinopathy. Systemic conditions such as diabetic and hypertension affect the microvasculature and commonly appears as ocular changes. Presentation of retinopathy may be the first symptom of systemic hypertension and referral to an ophthalmologist is recommended. Hypertensive retinopathy is characterized into three stages: mild, moderate, and malignant. Hypertensive retinopathy may also present in those with preeclampsia. Malignant hypertension causes other eye pathologies such as choroidopathy and neuropathy due to ischemia. Hypertensive choroidopathy is more commonly observed in younger patients with acute hypertension and is characterized by focal necrosis of choroicapillaris underlying the retinal pigment epithelium and outer retina. Choroidopathy manifests as yellow exudates referred to as Elshnig spots. Pregnancy induced hypertension, preeclampsia and eclampsia, commonly causes fundus changes and can be used as an indicator for degree of treatment and severity of hypertension. Abnormal fundus findings in patients with preeclampsia may predict indicate impending eclampsia. Treatment for HR is best accomplished by lowering blood pressure or treating the secondary cause of HR.

Epidemiology

Hypertensive retinopathy is present in just over a quarter (29.4%) of those with hypertension. It affects those with hypertension in adults age 50 years and older and males (64.1% compared to 35.9% females). HR is observed in 3-14% of persons 40 years of age and older and according to the Beaver Dam Eye Study an incidence in those 43 years of age and older is 6-10%. End organ damage in organs besides the eye (organ damage caused by the circulatory system) is more commonly seen in those with hypertensive retinopathy. HR affects African Americans more than whites, most likely due to higher prevalence of hypertension and severity of hypertension.

Risk Factors

Risk factors for hypertensive retinopathy include increased duration of hypertension, family history, smoking, increased blood pressure and plasma levels of endothelin-1. Increased risk of malignant hypertension is associated with younger age and African-American men.

Pathogenesis

Hypertensive retinopathy occurs due to systemic elevated arterial blood pressure that damages the retinal blood vessels. As blood pressure increases, vasculature responds by vasoconstricting due to autoregulatory mechanisms. In a healthy individual, autoregulation maintains ocular blood flow through the following mechanism: the arterioles constrict with a rise in blood pressure and dilate with a drop-in blood pressure. Those with systemic elevated arterial blood pressure, experience a focal or generalized dilation and damage of the blood retinal barrier. Chronic
hypertension leads to the development of thickening of the intima layer of retinal vessels and hyperplasia of media wall. This is seen in focal arteriolar narrowing and arterio-venous nicking. The exudative stage occurs with the disruption of the blood retinal barrier, necrosis of smooth muscle and endothelial cells, exudation of lipids and blood, and retinal ischemia. As the retinal-blood barrier degrades, cotton wool spots, edema, and retinal detachments occur. HR does not consistently follow this sequence of disease with signs of severe appearing prior to mild signs. High blood pressure alone does not account for the pathogenesis of HR and may be due to oxidative damage, low-grade inflammation, and increased platelet activation.

Signs and Symptoms

Hypertensive retinopathy can be the presenting symptoms in those with asymptomatic hypertension. Symptoms typically occur in later stage of the disease. Patients may complain of blurred vision or visual field deficits. Less common symptoms may include headache and light flashes. Signs of HR may include focal retinal arteriolar narrowing, arterio-venous nicking, microaneurysms, cotton wool spots, hard exudates, retinal hemorrhages, retinal/macular edema, and retinal detachments. Generalized retinal arteriolar narrowing and arterio-venous nicking are indicative of chronic hypertension whereas microaneurysms, focal arteriolar narrowing, cotton wool spots, and hemorrhages are indicative of acute hypertension. Cotton wool spots, areas of fluffy white or irregular shaped spots that may cover blood vessels. Edema and retinal detachment may occur due to ischemic damage of the retinal pigment epithelium.

![Fundus image of hypertensive retinopathy](image)

Figure 12: Fundus image of hypertensive retinopathy.

Diagnosis

Diagnosis of HR is accomplished using patient’s history, fundoscopy exam, and possibly optical coherence tomography (OCT), and fluorescein angiography. A history positive for hypertension and family history may be indicative for HR. Fundoscopy exam is not a reliable for diagnosis and staging of hypertensive retinopathy; however, still plays an integral role in the identification of ocular changes related to retinopathy. HR is classified using a grading system. Grade 1 displays subtle broadening of the arteriolar light reflex, mild arteriolar narrowing (attenuation), particularly of small branches, and vein concealment. Grade 2 is associated with obvious
widening of the arteriolar light reflex and Salus signs (deflection of veins at arteriovenous crossings). Copper wiring of arterioles, banking of veins distal to arteriovenous crossings (Bonnet sign), tapering of veins on both sides of crossings (Gunn sign), and right-angled deflections of veins is associated with grade 3. Grade 4 displays grade 3 characteristics but displays silver-wiring of arterioles. Severe retinopathy (grade 3 and grade 4), or malignant hypertension, is relatively rare due to current hypertension treatment. (Patrick Scott, O.D., email communication) Cotton wool spots appear lighter on fluorescein angiography and only seen three to six-week period before fading away.

Treatment

The main treatment for hypertensive retinopathy is controlling blood pressure. Adequate blood control can lead to retinopathy regression. Laser treatment or intravitreal injection of corticosteroids and anti-VEGF can be performed to help reverse vision loss due to retinal edema or retinal detachment. Optic neuropathy should not be treated by rapidly lowering blood pressure due to the possibility of worsening ischemia at the optic nerve. Autoregulation of retinal vessels leads to decreased perfusion to the optic nerve when blood pressure is dramatically lowered. Malignant hypertension requires hospitalization and commonly parenteral drug therapy to lower blood pressure. Special consideration should be given to pregnant individuals with HR. Fundus changes typically go back to normal, but permanent vision loss may be seen if irreversible damage was done to the blood vessels. Those with HR are at an increased risk of stroke, cardiovascular disease, and end organ damage (EOD). Patients with HR are at an increased risk of stroke as retinal vessels may be indicative of cerebral vasculature damage. Increased retinal arteriolar narrowing was associated with an increased risk of coronary heart disease in women, not men.

Retinoblastoma

Overview

Retinoblastoma (RB) is the most common cancer that occurs in the eye of pediatric patients, accounting for 4% of cancers in children under the age of fifteen and occurs in the womb up until the child is five years of age. Retinoblastoma is caused by a mutation in the retinoblastoma gene (RB1) located on chromosome 13. Retinoblastoma can occur bilaterally or unilaterally; hereditary RB typically occurs bilaterally. Proportion of bilateral cases and unilateral cases is stable at 27% and 72%, respectively and accounts for 2% of cancers in children under the age of fifteen. Those with bilateral RB are at an increased risk of developing secondary cancers and also may develop trilateral retinoblastoma. This typically occurs in the pineal gland or midbrain. Current treatment has a survival rate of 97%.

Epidemiology

Retinoblastoma occurs in 1 in 15,000 to 1 in 16,600 births and is the most common ocular cancer in children. There seems to be no difference in race or gender in respect to the incidence and prevalence of RB. Diagnosis occurs in children five years of age and younger, but some cases
have reported diagnosis at the age of 20.\(^\text{224}\) Pineal and non-pineal trilateral retinoblastoma occurs in 0.3%-3.8% of patients with retinoblastoma, higher prevalence rates occur in those with hereditary and bilateral RB.\(^\text{225}\)

Risk Factors

A family history of germ-line RB mutation is a risk factor for RB; however, only 5% of patients have a positive family history.\(^\text{226}\)

Pathogenesis

Retinoblastoma occurs most commonly due to a mutation in the RB1 gene, a nuclear protein that acts as a tumor suppressor and encoded on chromosome 13q14. The RB1 gene expresses a protein, pRB, that regulates cell division. pRB binds to the E2F transcription factor to suppress cell-proliferation, specifically prevents a cell from transitioning to the next phase of the cell cycle, G\(_1\) to S phase.\(^\text{227}\) RB mutation can be germline or somatic, depending if the mutation is passed to the offspring. The two-hit hypothesis proposed by Alfred Knudson states the mechanism of a two mutation events behind the cause of Retinoblastoma.\(^\text{228}\) Hereditary RB\(_1^+\)/RB\(_1^\) inherit only one working copy of the RB1 gene from one of their parents (mom or dad) and undergo one mutation, “one hit”, that renders the RB1 gene non-functional, RB\(_1^-\)/RB\(_1^-\). Germ-line mutations, passed to offspring, occur in about 40% of cases and commonly are bilateral cases. Germ-line mutations account for 20% of unilateral cases.\(^\text{229}\) In germ-line cases all the patient's cells contain only one working copy of the gene, therefore those with hereditary RB are predisposed to develop secondary cancers later in life due to only requiring one mutation.\(^\text{226}\) Non-hereditary RB are born with two working copies of the gene, RB\(_1^+\)/RB\(_1^+\), undergo 2 mutations, “two hits”, that cause the RB1 gene to be non-functional within one somatic retinal cell. The two hit hypothesis is not as simple as once believed as different mutation affect the severity and phenotypic expression.\(^\text{227}\) The type of mutation affects the severity and phenotypic expression. A missense mutation is associated with unilateral RB, whereas frameshift and nonsense mutations are associated with bilateral RB.\(^\text{229,230}\)

The pathogenesis may be more complicated than previously believed. Not all cases of Retinoblastoma are due to a mutation in the RB gene, 2.7% of cases did not indicate a RB1 mutation, but an increase in the MYCN, an oncogene, or due to the human papilloma virus, HPV. MYCN promotes unregulated cell proliferation. These cases present with a different histology and an earlier stage of diagnosis than those with a RB1 mutation.\(^\text{231}\) HPV has been implicated in the development of non-hereditary Retinoblastoma as it prevents pRB from binding to E2F leading to uncontrolled cell proliferation; however, this is mainly seen in developing countries.\(^\text{232,233}\)

Signs and Symptoms

Since Retinoblastoma primarily affects children five years of age and younger, parents commonly notice signs and symptoms of the disease. The most common sign of RB is leukocoria, a white pupil seen in the absence of red reflex in a picture. The white reflex is the tumor being reflected in the flash of a camera or in an fundoscopic exam. Second most common
sign is strabismus, occurring due to a tumor in one or both eyes causing a misalignment and eventual loss of central vision. Repetitive, uncontrolled eye movements, nystagmus, may be observed or a red, inflamed eye. Rarely heterochromia (different color pupils), hyphema (blood in anterior chamber of eye), glaucoma (increased intraocular pressure), or orbital cellulitis/inflammatory presentation may occur.

Figure 13: Fundus exam showing a Retinoblastoma tumor.

Diagnosis

Diagnosis typically occurs before the age of 5, with the average age of bilateral at 13 months and unilateral at 24 months. Cases have been diagnosed past the age of 20, but very rare. If a parent or physician notices signs and symptoms associated with Retinoblastoma, referral to an ocular oncologist is indicated. A physical examination will be performed including ophthalmoscope examination under anesthesia (EUA), ocular ultrasonography, optical coherence tomography (OCT), and an MRI of the brain and orbits. The ocular ultrasonography and OCT typically occur during the EUA. The ocular ultrasonography may be performed prior to the EUA and detects calcification of the tumor, characteristic of RB. The OCT can be used for screening, detection, and during and after treatment of RB. The MRI detects metastasis to the optic nerve and presence of trilateral RB. Genetic testing is completed for every RB patient to detect germline mutations. If germline mutations are found, parents and sibling should be tested by a geneticist.

Once diagnosed, the tumor will be classified into one of five groups using the Intraocular Classification of Retinoblastoma (ICRB) or by International Intraocular classification of Retinoblastoma (IICR). The Philadelphia or St. Jude classifications may also be used for the stages of RB. A unified classification system has yet to be developed; the ICRB and IICR are the primary classification systems used throughout the world. The ICRB and IICR are classified into groups A-E according to size, location, and other features to predict response to treatment. Group A is very low-risk with a tumor less than 3 mm, confined to the retina, at least 3 mm from the fovea, 1.5 mm from the optic nerve, and no vitreous or subretinal seeing present. Group B
Tumors are bigger than group A, characterized by subretinal fluid extending from the tumor but not extending 5 mm from the base of the tumor. Group C is moderate-risk displaying focal vitreous or subretinal seeding, discrete retinal tumors present, and only one quadrant of subretinal fluid present. The seeding must be local, fine, and limited to an area that may be treated with radioactive plaque. Group D is at high risk with diffuse greasy, extensive vitreous or subretinal seeding and/or massive, non-discrete endophytic or exophytic disease. The subretinal seeing may be plaque-like and may have greater than a quadrant of retinal detachment. The very high-risk is group E with eyes displaying one or more of the following: irreversible neovascular glaucoma, massive intraocular hemorrhage, aseptic orbital cellulitis, tumor anterior to anterior vitreous face, tumor touching the lens, diffuse infiltrating retinoblastoma and phthisis or prephthisis. Groups A-C were successfully salvaged in over 90% of eyes and group D, the globe was salvaged in approximately 47% of eyes. Group E eyes were enucleated immediately.

Treatment

Current treatment of Retinoblastoma is effective with a 97% survival rate, with survival the primary goal followed by globe and vision preservation. If diagnosis is late in the disease or treatment is discontinued, prognosis is not promising with a high rate of metastasis and removal of the eye. The stage of the tumor at diagnosis determines the treatment plan with low-risk tumors treated focally and high risk treated aggressively. Group A is treated primarily with focal therapies as spot treatment of tumor and surrounding vasculature combined with systemic chemoreduction therapy. Focal therapies consist of laser therapy, thermotherapy, cryotherapy, and stereotactic conformal radiotherapy (SCR). An argon laser is used to coagulate the blood supply to the tumor in laser therapy. A newer laser treatment is SCR as it delivers a more accurate laser treatment. Thermotherapy is performed under general anesthesia with an infrared radiation and is often paired with chemotherapy. Lasting regression was seen in 86% of tumors after thermotherapy. A metal probe is cooled to very low temperatures to freeze the tumor cells for cryotherapy. Chemotherapy in combination with focal therapy is common for groups A-D; however, if treatment fails external beam radiation therapy, EBRT, or enucleation may be performed. EBRT is an older, outdated treatment associated with serious complications including: cataract, facial growth disturbance, optic neuropathy, and secondary malignancy. Group C and D globes commonly undergo systemic chemotherapy combined with focal therapy and/or intra-arterial chemotherapy. Removal of the eye globe is referred to as enucleation and is a life-preserving surgery at late stages of the disease. Once removed it is sent for pathologic evaluation to determine risk of spreading. An ocular prosthesis is fitted.

Intra-arterial chemotherapy technique (IAC) is an effective treatment as the first-line and second-line of defense of RB used in combination with or as an alternative to systemic chemotherapy and focal therapy. IAC is associated with an increase of survival without enucleation. As primary treatment, 100% of globes treated as group A, B, and C were salvaged and 94% and 36% in group D and E, respectively. An estimated ocular event-free survival rate of 70-72% has been reported. As a secondary treatment, IAC has a 58-62% of a 2-year ocular event-free survival rate. Also, effective to resolve complete and partial retinal detachments. The temporary complications associated with IAC are transient eye-lid edema, blepharoptosis, and forehead hyperemia. Longer term complications seen in 2% or less of globes are vitreous hemorrhage, branch retinal artery obstruction, ophthalmic artery spasm with reperfusion,
ophthalmic artery obstruction, partial choroidal ischemia, and optic neuropathy. Stroke, death, or neurological complications have not been observed with IAC. 246,248,249

Fuch's Corneal Dystrophy

Overview

Fuch’s Endothelial Corneal Dystrophy (FECD) is a bilateral, age-related disorder affecting the corneal endothelium that causes significant vision loss. It was first described by an Austrian ophthalmologist in 1910. 250 It is the most common reason for corneal transplantation, accounting for 36% of the 47,000 corneal transplants in the United States. 251 FECD sub-divides into: early-onset around the age of 30 and late-onset around 50 years of age. Early-onset is rare and typically follows an autosomal dominant inheritance pattern. Late-onset has been observed as familial and non-familial cases. The most common clinical characterization of Fuch's dystrophy is into 4 stages. Stage 1 is characterized by corneal guttae period, with local thickening of the Descemet's membrane (DM), which is visible with corneal biomicroscopy. In stage 2 the number of corneal guttae increase and fuse together as they expand to the periphery. As the location of the corneal guttae expand throughout the DM, the density of the corneal endothelial cells decreases. The function of these cells is impaired and corneal stromal edema increases. As FEDC progresses to stage 3, corneal stromal edema continues to worsen leading to the formation of epithelial and subepithelial bullae. These bullae can rupture which causes pain, photophobia, tearing, and increases the risk of infection. The final stage is due to long-term corneal stromal edema. This may lead to subepithelial connective tissue and can occur at the same time as corneal scarring and corneal neovascularization. The appearance of subepithelial connective tissue occurs with reduced corneal transparency. Corneal scarring and neovascularization also contribute to a significant decrease in visual acuity. The four stages may be observed in the same eye. 252

Epidemiology

FECD affects 4% of the population 40 years of age and older. Women tend to be affected two to four times more than men. Late-onset FECD may be familial, as it is passed on to family.

Risk Factors

Risk factors associated with FECD are a family history and increasing age as late-onset is more common. Few studies have been completed to determine risk factors for FECD. 253

Pathogenesis

The pathophysiology of Fuch’s Endothelial Corneal Dystrophy is due to a combination of genetic and environmental factors. The cause of the increased deposition of extracellular matrix, ECM, and loss of corneal endothelial cells may be due to oxidative stress, abnormal apoptosis, inflammation, and epithelial-mesenchymal transition, EMT. 252 Fuch’s dystrophy affects corneal endothelial cells (CEC). CEC function to maintain the cornea’s transparency through sodium-
activated ATPase pumps. As functioning declines in FECD, the cornea begins to accumulate fluid. EMT, immune-response, and ECM related genes were found to be upregulated and inflammatory cytokines and visual perception-related genes were downregulated. The upregulation genes demonstrate an increased immune response in the corneal endothelium and Descemet’s membrane. Downregulation of the inflammatory cytokine may induce monocytes to differentiate to dendritic cell maturation, fibrocyte differentiation characteristic of late-FECD.

The results of the altered expression of the genes causes the increased deposition of ECM and endothelial cells loss. Abnormal apoptosis may occur due to misfolded proteins causing rough endoplasmic stress or oxidative DNA damage leading to endothelial cell loss. Reactive oxygen species, ROS, are known to cause cell death and vascular endothelial dysfunction leading to cell loss. Abnormal deposition of the ECM, corneal guttatae, may be due to EMT inducing genes causing excessive production of ECM proteins in corneal endothelial cells found in FECD patients. Genetic analysis has implicated specific mutations in the development of FECD; early-onset is associated with the COL8A2 gene and late onset is most likely an interaction between multiple genes. The COL8A2 gene that encodes for the collagen alpha-2 (VIII) chain, extracellular matrix protein, is implicated in familial and non-familial cases. The disease typically follows an autosomal dominant inheritance pattern. Genetic analysis has implicated specific mutations in the development of FECD; early-onset is associated with the COL8A2 gene and late onset is most likely an interaction between multiple genes. The COL8A2 gene that encodes for the collagen alpha-2 (VIII) chain, extracellular matrix protein, is implicated in familial and non-familial cases. The disease typically follows an autosomal dominant inheritance pattern.

Signs and Symptoms

Those with FECD complain of blurry vision. Their vision may be misty in the morning and will clear throughout the day. A feeling of a gritty or foreign body sensation, redness, pain, eye watering lasting for hours, and seeing halos around sources of light may occur in those with FECD. Poor recovery after cataract surgery or eye surgery may be indicative of FECD.

Figure 14: Light microscope of a cornea affected by Fuchs corneal dystrophy showing numerous excrescences on the posterior surface of the Descemet membrane (guttae). The presence of cysts may be observed beneath the basement membrane. Periodic acid-Schiff stain.
Diagnosis

Diagnosis is done using slit-lamp examination and optic coherence tomography (OCT). Slit-lamp is primarily used in the diagnosis and initial assessment of FECD. Presence of corneal gluttae is observed using specular microscopy or confocal microscopy. OCT is becoming more commonly used to trace the progression of the disease. 262,264

Treatment

Treatment for FECD is not necessary until the cornea becomes cloudy and vision is affected. Non-surgical treatment options include dehydrating agents such as 5% sodium chloride or use of a hair dryer. The goal is to dry out the cornea to clear vision. The hair dryer method is best done at arm-length and low-setting to avoid thermal injuring to the cornea. The purpose of the dehydrating agents and hair drying is to remove the fluid from the cornea that disrupts vision. An effective prevention is yet to be discovered due to lack of understanding of pathogenesis.

FECD is the leading cause of corneal transplant. Different variations of a keratoplasty may be performed to replace the cornea. The most popular procedure over the past 100 years is a penetrating keratoplasty, PK, which involves the replacement of the entire cornea. Recovery of visual acuity is slower compared to other surgical options. Endothelial keratoplasty (EK) is the replacement of the endothelial layer without affecting the anterior structure of the cornea. The Descemet membrane endothelial keratoplasty (DMEK) and Descemet stripping endothelial keratoplasty (DSEK) have similar 5-year survival rates, approximately 93%. DMEK had a significantly lower risk of immunologic rejection. 265 DSEK patients experience an improvement in vision up to 5 years after surgery with more than half of eyes realizing acuity enhancement better than 20/25. 266 Commonly those with FECD also have or will develop cataracts. If this patient undergoes cataract surgery, they will speed up the need for a corneal transplant as endothelial damage is common and FECD patients’ corneas are predisposed to have a thinner corneal thickness. Future treatments may include human cultured endothelial cells to restore function to the cornea as the cornea cannot regenerate. This has been demonstrated in rabbit corneas and will continue to human trials. 267

Herpes Zoster Ophthalmicus

Overview

Herpes Zoster Ophthalmicus (HZO), is a complication of the varicella zoster virus that causes shingles and chicken pox. It is the human virus type 3 and affects the first branch of the trigeminal nerve (V1), the ophthalmic region of the fifth cranial nerve. 268 The trigeminal nerve innervates the eyelid, brow, forehead skin, and skin of the tip of the nose. Signs and symptoms can include a forehead rash and painful inflammation of the tissues surrounding the eye. The most common eye conditions with HZO are keratitis, conjunctivitis, and uveitis; however, the long-term complications can include glaucoma, cataract, corneal scaring, and PHN (postherpetic neuralgia). 269 HZO is normally self-limiting but is treated with oral-antivirals and in combination with topical corticosteroids.
Epidemiology

The incidence of Herpes Zoster Ophthalmicus is approximately 2.2 per 1,000 to 3.4 per 1,000 in the general population. The incident rate does not seem to be affected by gender but does increase with age as older populations may be affected up to 10 per 1,000 persons. This disease presents in roughly 8-20% of those affected by the Herpes Zoster virus and reoccurs in approximately 6% of those affected. A trend in increasing rate of HZ eye involvement has been observed and does not seem to be connected to vaccination of the varicella zoster virus.

Risk Factors

Risk factors for Herpes Zoster Ophthalmicus include older age, average age of 63, emotional and physical stress, immunodeficiency, poor nutrition, HIV, and cancer. Therapies associated with cancer such as radiation therapy and chemotherapy, also are risk factors. These risk factors mainly focus on the increased incidence of HZO and immunocompromised individuals.

Pathogenesis

The varicella zoster virus can first present as the chickenpox infection (can also be introduced in the vaccine, rarely). After the primary infection, the VCV can lay dormant for years and is replicated within regional lymph nodes. In the case of herpes zoster opthalmicus, the virus lays dormant within the trigeminal nerve until a cell-mediated immune response reactivates the virus. When the virus is reactivated it typically only occurs on one nerve root on one side of the body, affecting one side of the face. T-cell mediated immunity may play a role in the reactivation of the virus, but further studies are needed. After reactivation the virus travels along the nerve and causes the associated signs and symptoms due to the local immune system response.

Signs and Symptoms

HZO may be divided into three phases: pre-eruptive, acute eruptive, and chronic phase. The pre-eruptive phase may be characterized by a burning, tingling, or shooting pain that may be accompanied by systemic viral symptoms such as a fever, malaise, fatigue, photophobia (sensitivity to light), and headache up to a week prior to the acute eruptive phase. A painful, pustular, vesicular rash and inflammation affecting the forehead and/or tissues surrounding the anterior and posterior eye characterizes the acute-eruptive phase of HZO. Hutchinson's sign is a classic sign of HZO that affects the skin of the tip of the nose and is prognostic for ocular inflammation, corneal sensory denervation, and sight-threatening complications. Eye involvement may be keratitis (most common), conjunctivitis, uveitis/iritis, and scleritis that may further complicate the infection. Eye-lid involvement typically appears as a macular rash and further acquire a secondary infection producing yellowish discharge. The acute-eruptive phase may last 10-15 days. Immunocompromised individuals may experience more serious complications including retinal detachment and acute retinal necrosis that may result in permanent vision loss. The chronic phase occurs after the rash subsides and is characterized by postherpetic neuralgia, PHN. This is the most common chronic complication in
HZO patients. PHN can last more than 30 days and is characterized by chronic severe neuropathic-type pain that may be accompanied by ocular manifestations that may cause a secondary infection. 279

Diagnosis

A complete history should be obtained including a history of a primary VCV infection and vaccination records. If HZO is suspected a complete ophthalmic examination is indicated by an ophthalmologist. Vision tests, intraocular pressure, pupil reaction, and in-depth examination of the eye and surrounding tissue should be completed to document ocular involvement. Examination includes fluorescein staining of the cornea and a dilated fundoscopy examination to document corneal and retinal involvement. 271,279

![Figure 15: Fluorescein staining of the cornea using cobalt blue light.](image)

Treatment

Vaccination is paramount to prevent HZ, HZO, and PHN infection. The recommended age to receive the shingles vaccination is 60 years of age and older. 282 HZO is a self-limiting infection; however, prompt treatment leads to a lower incidence of adverse effects and a shorter duration. Treatment varies depending on the degree of ocular involvement. Acyclovir is the most common oral anti-viral prescribed but valacyclovir or famciclovir have been shown to be equally effective to prevent virus replication. Hospitalization may be needed to administer intravenous acyclovir in immunocompromised patients or in those with sight-threatening complications. Topical corticosteroids reduce inflammatory response and control immune-associated keratitis and iritis. 268,271,279,283,284

Complications observed with HZO include PHN, retinal detachment, optic neuritis, and severe corneal involvement. Postherpetic neuralgia is characterized by persistent pain that continues after the rash has resolved and occurs in 21% of those with HZO. Older age and HZO with keratitis, conjunctivitis, or uveitis were found to be risk factors for PHN. 285 An increased risk of stroke, 2-fold increase, and dementia, 2.9-fold increase, is associated with varicella zoster virus
due to negatively affected vasculature. A permanent decrease in visual acuity is observed in 6.6% of HZO and portion of this is due to the virus affecting the optic nerve resulting in optic neuritis.

Amblyopia

Overview

Amblyopia, often referred to as lazy eye, is decreased vision due to abnormal development during infancy or childhood of one or both eyes. Amblyopia is defined as best-corrected visual acuity of 20/40 to 20/400 of one eye as the contralateral eye having a visual acuity of 20/40 or better. It is the most common cause of vision impairment in children. If vision is altered by strabismus, refractive error, or vision deprivation during the critical period for development of the vision centers of the brain, development will not occur properly resulting in Amblyopia. The critical period in development occurs when particular behavior, integration of binocular vision, is acquired which cannot be learned after this period. A dependence on the dominant eye will occur and the eyes will not coordinate. Coordination is necessary for binocular vision which is necessary for depth perception. Strabismus is a misalignment of the two eyes, as one eye is weaker than the other it is often not tracking with the stronger eye. The brain will be receiving signals from both eyes that differ slightly leading to the visual cortex not coordinating the two images. Refractive error may result in amblyopia as one eye with poor vision cannot contribute to the development of the visual cortex. Vision deprivation results in the most severe amblyopia and is due to congenital cataracts, ptosis, retinal detachment, or congenital corneal opacities. Treatment is time sensitive for proper development. Those with amblyopia are at an increased risk of permanent monocular vision impairment if subsequent trauma or disease affects the dominant eye.

Epidemiology

Amblyopia occurs in approximately 0.5-3.5% of children 8 years of age and younger. Gender does not affect the rate of amblyopia. Amblyopia was found to occur in 2.6% of Hispanic/Latino children, 1.5% of African-American children, and 1.8% in Asian and non-Hispanic white children. Bilateral amblyopia is rare occurring in 0.4 to 0.12% of children. It is the cause of approximately 50% of cases, refractive error is responsible for approximately 15 to 20% cases, and deprivalational is approximately 5% of cases.

Risk Factors

Children with strabismus, refractive error, and congenital causes of vision deprivation place a child at risk of developing amblyopia. Those at risk to develop amblyopia are children born premature, small size for gestational age, a first-degree relative with amblyopia, and a neurodevelopmental delay.
Pathogenesis

Amblyopia due to strabismus occurs as the two foveae receives two distinct images and the visual cortex suppresses one image to avoid double vision (diplopia). Strabismus can be divided into convergent (esotropia, “crossed eyes”) or divergent (exotropia, “wall eyes”) strabismus depending on extrinsic eye muscles affected. As suppression occurs long-term, strabismus amblyopia develops as the weaker eye’s image is made “invisible” to avoid double vision or confusion. Amblyopia does not occur in all children with strabismus. Those with intermittent strabismus, the image is fused for a large portion of the time preventing the development of amblyopia. Those with alternate fixation, sometimes the right and sometimes the left eye, amblyopia does not develop in most children because one eye is not dominant.

Asymmetric refractive error (anisometropia) occurs due to an image presenting with different clarity at the fovea of both eyes. The eyes have unequal refractive error resulting in an image being focused on the fovea of one eye, but not the other. Anisometropia is most common in hyperopic eyes and still may occur in severe myopia. Severe uncorrected bilateral refractive error may result in ametropic or isoametropic amblyopia.

Deprivational amblyopia is caused by the distortion of images at the fovea that prevents the visual cortex from developing properly. Vision deprivation can be due to congenital cataracts, ptosis, retinal detachment, or congenital corneal opacities. Congenital cataracts can cause amblyopia due to decreased transparency of the lens causing severe refractive error. Ptosis is the falling or drooping of the upper eyelid that can block vision and amblyopia occurs in 18% of children with ptosis. Can occur as the muscles holding up the eyelid become tired or congenital problem with the muscle, levator palpebrae. Deprivational amblyopia can result in permanent visual impairment if not treated early.

Signs and Symptoms

Amblyopia is asymptomatic in most children and detection relies on screening by screening programs by volunteers, parents, schools, or pediatricians. Children with amblyopia often squint, close one eye to see better and experience headaches, eyestrain and general vision impairment.

Diagnosis

Amblyopia is defined as best-corrected visual acuity of 20/40 to 20/400 of one eye as the contralateral eye having a visual acuity of 20/40 or better. Screening to detect amblyopia should be done for all children, specifically those 3 to 5 years of age. It is difficult to diagnosis children under the age of 3 due to lack of mature responses. Visual acuity screening is commonly accomplished using Lea symbol chart or the HOTV visual acuity tests. The Lea chart uses the symbols (heart, house, heart and circle) of illuminated objects to test monocular vision. HOTV utilizes the letters (H, O, T, and V). The tumbling E test may also be used but is difficult for young children. Positive screening tests constitutes referral for ophthalmologist evaluation. Other screening options include photo screening and autorefration.

Photo screening is used to detect ocular defects that commonly cause amblyopia and can be
analyzed by an ophthalmologist, computer, or a reading center. Autorefraction, automated retinoscopy, detects refractive error in each eye.

Treatment

Untreated amblyopia can lead to permanent vision impairment through adulthood. Historically amblyopia was treated by placing an eye patch over the dominant eye to strengthen the use of the other. Amblyopia may be treated for short periods of time throughout the day with multiple methods: patching, binocular iPad games, and perceptual learning. Studies have demonstrated full-time occlusion therapy is equally effective as a 6-hour period occlusion. A 6-hour occlusion therapy is also equally effective as a 2-hour occlusion period. Best outcomes with treatment observed with patching is in younger children, as the age increases effectiveness decreases. Surgery for strabismus caused amblyopia to alter the length of affected extraocular muscle is commonly performed to align the eyes. Perceptual learning relies on repeated practice of a visual task either monocular or simultaneously to both eyes and is associated with synaptic plasticity. Perceptual learning may improve crowded letter discrimination and contrast sensitivity. The criticism of perceptual learning focuses on the inability for the learning to be used for novel situations; however, is still a valid avenue to improve vision particularly in adults. Dichoptic training presents stimuli to each eye independently to reverse binocular viewing to reprogram binocular vision integration. The patient’s suppressed eye is presented with an image with a higher contrast to undo the suppression of the amblyopic eye. Dichoptic training is employed in binocular iPad applications, such as a Falling Block game or Dig Rush game (more stimulating game with a higher compliance). Short term vision improvement for a binocular iPad game is more beneficial than traditional patching, but long-term benefit has yet to be determined. One study found Dig Rush game to be ineffective in improving visual acuity 4 to 8 weeks post treatment.

Retinitis Pigmentosa

Overview

Retinitis Pigmentosa (RP), also known as rod-cone dystrophy, compromises a group of inherited progressive retinal dystrophy disorders that primarily target photoreceptors and pigment epithelial function that may lead to blindness. RP is categorized into non-syndromic (only affecting eyes) and syndrome (systemic disorder). Inheritance patterns vary and are divided into three groups: dominant, recessive, and X-linked. Non-mendelian inheritance patterns are also observed, such as digenic inheritance, compound heterozygosity, maternal (mitochondrial) inheritance, or sporadic (only family member with a disease genotype). Interestingly, identical mutations may cause distinctly different clinical presentations or different diseases altogether. Common syndromic forms of RP are Usher syndrome and Bardet-Biedl syndrome. Usher syndrome presents with vision and hearing loss. Bardet-Biedl syndrome is characterized by postaxial polydactyl (additional digit on ulnar side of hand), central obesity, mental retardation, hypogonadism, and renal dysfunction. RP negatively affects quality of daily life as it affects daily activities such as cooking, driving, and self-grooming. Treatment options are available; however, RP is considered incurable.
Epidemiology

Retinitis pigmentosa is a relatively rare disorder; estimated to affect 1 in 4,000 persons and incidence of 0.79 in 100,000.310,311 Prevalence increases with age for both genders. Women with X-linked RP may present with RP later in life than other forms of the disorder.311 Non-syndromic Retinitis pigmentosa comprises over 65% of all cases in the United States. Of those non-syndromic cases are approximately 30% autosomal dominant, 20% autosomal recessive, 15% X-linked, 5% recessive early-onset, and 30% sporadic (random). Usher syndrome and Bardet-Biedl syndrome comprise 10% and 5% of all RP cases.307 Approximately 40% of mutations causing RP are yet to be identified. Only 60% of sporadic cases, unknown or absence of family history of disease, mutations have been identified.312

Risk Factors

Since Retinitis Pigmentosa is a genetic disease, the mode of inheritance affects the risk of developing Retinitis Pigmentosa. Autosomal dominant and autosomal recessive with RP have a 50% and 25% chance of passing on RP to their children, respectively due to mendelian genetics. Those with family members affected have a decreased risk of developing RP as they age because diagnosis typically occurs approximately at 37 years of age.313

Pathogenesis

Retinitis Pigmentosa is also known as rod-cone dystrophy because the degeneration begins in the peripheral rods and moves centrally to the cones. Rods and cones are photoreceptors located in the retina that capture light. Rods are necessary for dim, dark lighting and are found in the periphery of the retina. Cones are necessary for color-vision, bright light, and found in the center of the retina. Degeneration of the rods characteristic of RP can be caused by over 65 different genetic mutations.314 A difficulty associated with the characterization and prognosis of RP is how one mutation can present with different signs and symptoms in different patients. The majority of identified RP genes only causes a small number of cases, except for RHO (Rhodopsin), USH2A (Usherin), and RPGR (RP GTPase regulator) genes together cause 30% of cases.307

Degeneration of the rods and followed by degeneration of the cones follows a predictable pattern according to the gene that is mutated. The cones do not degenerate due to the mutated gene, rather from the effects of the death of the rods. The timeline of rod and cone death associated with specific gene mutations may differ due to environmental and other genetic differences within an individual. The relationship of rods on cones survival requires further research but may be due to the following theories. Trophic support between rods and cones may play a role as a viability factor (two forms of RdCVF protein) expressed by rods and other retinal cells has been identified to affect survival of cones.315,316 RdCVF does not directly cause cone death but may predispose cones to be more susceptible to oxidative and metabolic stress.317,318 As the rods degenerate, there is a decrease in oxygen consumption as there are fewer photoreceptors to utilize oxygen. Decreased oxygen consumption increases oxygen levels in the outer retina spreading to the inner retina (central retina).319 This increase in oxygen levels leads to the increase in superoxide radical production. The antioxidants within the retina are overwhelmed
and may lead to increased oxidative stress. The oxidative stress on the cones increases and may cause cone death. The increase in oxygen levels in the inner retina due to rod death may lead to narrowing of blood vessels via autoregulation of vasculature.

Signs and Symptoms

Patients with RP first complain of night blindness, then progress to loss of peripheral visual field, and late in the disease may lose central vision. This progression typically takes decades to progress to central vision loss, but a few variations of the disease progress earlier. Night blindness presents early in recessive RP, median age of 11, and dominant RP presents later in life, median age of 24. Night blindness presents as disorientation in dim light or adaptation to dim light in a movie theater or tunnel is slower than normal. Earlier onset of night blindness is indicative of a faster progression of the disease. Daily vision such as reading, driving, or other tasks, are not affected in the early stages as only the rods are affected. As peripheral vision is lost, the visual field narrows causing patients to often bump into objects and other persons or notice objects seem to “just appear”. This stage of the disease is typically when patients are diagnosed as patients begin to notice symptoms. Constriction of visual field may progress 5-20% annually depending on gene affected and object used to test visual field. Cystic spaces of fluid within the fovea, cystoid macular edema, may be observed during this stage of the disease. Pigment changes within the peripheral retina and narrowing of blood vessels are commonly observed on fundoscopic examination. Pigment is released as rods die. Visual acuity is normal until later stages of the disease as the cones are affected. Posterior subcapsular cataracts are commonly observed. Severe vision impairment occurs approximately around 40 to 50 years of age.

Diagnosis

Diagnosis of RP is made by history, fundus exam, and testing results (Goldmann perimetry and full-field electroretinogram). The average age at diagnosis for dominant RP and recessive is 36.9 and 36.2, respectively and median age of 40. At diagnosis, patients may present in the early stages with minimal or no vision loss or present with severe visual field deficits. The age of onset is genetically determined and dependent on mode of inheritance. Fundoscopy exam of RP eyes typically demonstrates attenuation (narrowing) of blood vessels, waxy pallor of optic disc, and intraretinal pigmentation in a specific pattern, bone-spicule pattern. Full-field electroretinography (ERG) and multi-field ERG measure the electrical response of the retina to light and can record response to rods and cones separately. The amplitude correlates with size of visual field. Those with RP have a smaller amplitude and a slower response to the ERG stimulus. Multi-field ERG measures a specific portion of the retina. Spectral domain-optical coherence tomography (SD-OCT) can be used to visualize cone loss. Optical coherence tomography angiography (OCTA) is a newer technology to observe changes in vasculature associated with cone death. OCT is not a common diagnostic tool but may be used. Determination of the mode of inheritance is important to determine the risk to family members having RP and prognosis of the patient. Molecular diagnosis of RP can be accomplished by the following technologies: chain-terminating sequencing or Sanger method, Illumina sequencing system, Ion Turrent Semiconductor sequencing, DNA chip technology, single nucleotide
polymorphism (SNPs), High Resolution Melting (HRM) analysis, and Multiplex Ligation Probe Amplification (MLPA).

Treatment

An effective treatment to prevent vision impairment for Retinitis Pigmentosa is not available. It is recommended in the early stages RP patients to avoid excessive light to limit stress on photoreceptors, such as, sunglasses. Vitamin therapy, Vitamin A and Vitamin E, are recommended to slow down progression of RP. Vitamin A may be associated with slower loss of cone death in children with RP; however, some studies have found no effect of Vitamin A and fish oil (DHA) on cone degeneration. Excessive amounts of Vitamin A is toxic and should be taken with caution, particularly pregnant and those with osteoporosis. Supplemental vitamin E is not recommended unless a patient has a rare form of RP that can be effectively treated with it. Specific mutation identification is critical for childhood retinopathies for a quicker diagnosis and to distinguish RP from other possible retinal diseases. Alternative treatment may include acupuncture. Late stage RP vision impairment can be mitigated by the help of visual aids. As vision impairment progresses professional help should be sought to help adapt and learn skills.
needed for low vision. RP patients tend to have difficulty adjusting to vocational, social, and health-care environment as vision loss progresses.

Future treatments are focused on the biochemical mechanism causing rod and cone death. These treatments are gene therapy, pharmacologic, retinal implants, and retinal transplants. focusing on preventing degeneration in the early stages. Gene augmentation, combined gene-slicing, and gene replacement are forms of gene therapy. Gene therapy is found to be effective for a rare form of RP, Leber congenital amaurosis (LCA). Pharmacologic treatment may be most effective when the pathophysiologic mechanism is known. Neuroprotection has potential to treat RP by providing neurotrophic factors, inhibitors of apoptosis, calpain inhibitors, and rod-derived viability factor. Electrical retinal implants or artificial implants may be able to restore vision. Visual implants have a slow learning curve, but some improvement in vision and quality of life may be observed. Retinal cell transplantation shows promising results to improve vision in the future but is not a standard treatment. Animal models and clinical trials are necessary to continue to demonstrate effectiveness of these newer treatments.

Complications associated with RP such as posterior subcapsular cataracts, macular edema, and mild-inflammatory reactions can be treated. Posterior subcapsular cataracts can be treated via phacoemulsification. Macular edema can be treated with oral carbonic anhydrase inhibitors and mild inflammatory reactions typically self-resolve.

Retinal Detachment

Overview
Retinal detachment occurs when the retina separates from the retinal pigment epithelium and choroid layer beneath. This is a relatively common condition, occurring in 1 in 10,000 persons annually, and can cause significant vision loss without appropriate treatment. This is one of the most time-critical emergencies presented in an emergency setting regarding the eye. The retina is a complex organization of layers of neurons that capture light and convert light into neuronal signals that are sent to the visual cortex in the brain. Retinal detachment can occur due to a break in the retina, excessive fluid between the layers, or due to vitreous traction on the retina. The separation of the retina from the retinal pigment epithelium and choroid layer may lead to ischemia and fluid accumulation causing degeneration of the photoreceptors. Retinal detachment can be divided by pathophysiology into rhegmatogenous (caused by a hole or tear in the retina), nonrhegmatogenous (caused by leakage or exudation from beneath the retina), or vitreous traction pulling on the retina. Rhegmatogenous retinal detachments (RRD) are the most common. Fast and efficient diagnosis of a retinal detachment is critical to avoid permanent vision loss. This is best accomplished through recognition of common signs and symptoms.
Epidemiology

Incidence of approximately 1 in 10,000 persons annually. Those between the ages of 55 and 70 years of age are at the greatest risk of rhegmatogenous retinal detachment. Males are more likely to suffer from a retinal detachment. Those with a previous posterior vitreous detachment in one eye is at a considerable risk of development in the other eye within 6 months to 2 years and increases in prevalence with age in the fifth and ninth decade, specifically in the ninth decade.

Risk Factors

The risk factors for rhegmatogenous retinal detachment includes myopia, cataract surgery, fluoroquinolones, lattice degeneration, posterior vitreous detachment, and trauma. Risk factors for PVD include female, myopia, trauma, or intraocular inflammation. Lattice degeneration is present in approximately 6-8% of both clinical and autopsy studies and is an atrophic disease affecting the peripheral retina in a lattice pattern. It may lead to tears or holes in the retina. A family history may play a role in the risk of a rhegmatogenous retinal detachment. An occupation involving heavy-lifting may put an individual at risk for a retinal detachment due to the increase in intraocular pressure during the Valsalva maneuver.

Pathogenesis

Retinal detachment can be categorized into three types: rhegmatogenous, nonrhegmatogenous, and tractional. Each of these categories of retinal detachment can cause permanent vision loss due to apoptosis of photoreceptors cells. The degeneration of the photoreceptor cells may be due to TNFα as it plays a critical role in this process.

Rhegmatogenous retinal detachment is due to a break (hole or tear) in the retina allowing fluid to accumulate between the retina and underlying structures. Holes and tears may be asymptomatic or symptomatic with asymptomatic less likely to lead to retinal detachment. RRD can be further split into posterior vitreous detachment (PVD) and traumatic retinal detachment. It is characterized as the separation of the posterior cortical vitreous from the internal membrane of the retina due to vitreous degeneration and shrinkage. PVD is most common in those 50 to 75 years of age as the vitreous fluid of the posterior chamber slowly liquifies throughout the eye’s lifetime. If a tear or hole develops due to PVD or trauma, fluid may accumulate pulling the retina off of the underlying structures. Non-rhegmatogenous is caused by fluid accumulating between the photoreceptors and underlying structures without a break in the retina. This can be due to tumor growth or inflammation. Adhesions between the vitreous gel or fibrovascular proliferation and the retina can cause tractional retinal detachment by putting tension on the retina. This may result in a tear or hole and is typically caused by diabetic retinopathy, sickle cell disease, advanced retinopathy of prematurity, and trauma. Diabetic proliferative retinopathy that causes a tractional detachment may progress to resemble a rhegmatogenous component.
Signs and Symptoms

The majority of patients presenting with retinal detachment report abnormal vision that may include an increase in number of floaters, photopsia (flashes of light), or difficulty determining which eye is affected. PVD is associated with increased number of floaters, flashes, and decreased vision. 349 If the retina becomes detached, often a light to dark grey shadow is seen in the field of vision. Many patients notice the visual symptoms quickly, but often do not seek medical help due to lack of understanding of retinal detachment symptoms. 338 A shower of floaters is commonly associated with a shower of floaters and accompanies vitreous hemorrhage. This may progress to a substantial decrease in vision. The loss of reading ability may occur with retinal detachments involving the macula.

Diagnosis

If a patient is experiencing changes in vision or increase in floaters or photopsia (flashes of light), they should seek care from their primary care physician or optometrist. A complete patient history should be obtained to determine if a trauma occurred. High-risk conditions are vitreous hemorrhage, visual field loss, or vitreous pigment should be referred quickly for further examination by an ophthalmologist or retinal surgeon. A slit-lamp biomicroscopy and dilated retinal exam should be completed on all patients. A complete ophthalmologic examination may be completed including: a best-corrected visual acuity (BCVA) using the Snellen chart, slit-lamp biomicroscopy, slit-lamp dilated fundus examination, and SD-OCT examination. 344 An anterior segment examination may show particles, often referred to a “tobacco dust” (retinal pigment cells), and indicates a full-thickness retinal break. A fundoscopy exam of the entire retina will demonstrate the detachment with the hole responsible commonly visible. The hole responsible for the detachment is more difficult to detect after cataract surgery. 338 Ultrasounds may be modestly accurate in distinguishing retinal detachments from PVD. 350

Treatment

Treatment of retinal detachments requires prompt action by the primary care physician or ophthalmologist. When the patient first presents with a retinal detachment, do not allow the patient to consume any food or liquids until cleared by a physician. In case of trauma, cover eye with an eye-shield. Avoidance of physical activity should be avoided. The fovea is the area of the retina with the best visual acuity and contrast sensitivity. The best visual outcomes occur without fovea involvement and relies on prompt recognition by the patient and primary physician of the retinal detachment. 351 After initial examination, a retinal surgeon or ophthalmologist should be sought for further treatment.

Posterior vitreous detachment typically only requires education and reassurance for the patient. A vitrectomy and pars plana vitrectomy are performed with positive outcomes for PVD. These procedures are not indicated for most patients unless symptoms are severe. Reevaluation is recommended to ensure further complications have not occurred. 352 Retinal hold or tear is best treated with laser retinopexy or cyroretinopexy due to low risk of complications. Laser photocoagulation can also be performed to correct a retinal hold or tear. RRD is commonly
treated via pneumatic retinopexy, temporary peribulbar balloon, scleral buckling, and/or pars plana vitrectomy, particularly for uncomplicated retinal detachment. Scleral buckling is best performed with good visual acuity, clear crystalline lens, and partial retinal detachment and has few complications. 353 Traditional scleral buckling has a steep learning curve and uses indirect ophthalmoscope; however, chandelier-assisted scleral buckling surgery allows wide-angled viewing system during surgery and does not use an indirect ophthalmoscope (rather a slit-lamp). Both have similar reattachment rates. 354 Tractional retinal detachment may be treated with pars plana vitrectomy in those with diabetic proliferative retinopathy. Systemic treatment of diabetes is a beneficial treatment option for the diabetic patient. Surgery is not always performed for peripheral detachments or chronic macular retinal detachment. 348

CONCLUSION

This review demonstrates the complexity of the eye and the effect of chronic eye pathologies on vision and quality of life. Sadly, many of the pathologies included predominantly affect persons 75 years of age and older. Some pathologies that previously considered severe VI and blindness are considered preventable. Cataracts falls into this category as new IOL technology has revolutionized prognosis and dependence on corrective lenses. Many diseases still have unknown pathogenesis and require early detection for positive outcomes, such as, glaucoma, diabetic retinopathy, retinoblastoma, etc.

The web application and pathology literature review provide a resource of the most common and debilitating eye pathologies for pre-health students, allied health professionals, and interested individuals. It provides an overview, epidemiology, risk factors, pathophysiology, signs and symptoms, diagnosis, and treatment for the 11 pathologies included. A website has the capability for a user to search and scroll the various pathologies easily. Anatomy of the eye, including extraocular muscles, are provided on the home page. The understanding of the anatomy of the eye itself and the extraocular muscles may lead to a better understanding of the most common pathologies affecting the eye. The majority of eye pathologies that cause VI and blindness negatively influence the pathway of light through and to the cornea, lens, and retina.

The overall epidemiology of the various effects the older population, those 75 years of age and older, and those with systemic diseases, such as diabetes, hypertension, and immune-compromised individuals. With the aging of the United States population, there is predicted to be an increase in the overall prevalence of glaucoma, age-related macular degeneration, and diabetic retinopathy. Ethnicity does not seem to play a large role in the incidence and prevalence of the majority of eye pathologies. Risk factors regarding eye pathologies vary in each pathology. Common modifiable risk factors consist of smoking, UV light exposure, diet and exercise. Family history due to inheritance of predisposing genetic factors or mutations also is a common risk factor found in many of the pathologies.

The understanding of the pathophysiology plays an integral role in the effectiveness of treatment in each disease. Many of the eye diseases have an unknown mechanism and development of disease which prevents effective treatment and prediction of the development of specific diseases. For example, glaucoma is the degeneration of the optic disc due to increased IOP or
vascular disturbances. Due to the unknown mechanism of degeneration of the optic disc, once degeneration occurs it cannot be reversed. This requires early detection and hopefully prevention of progression to prevent substantial vision loss. Research regarding pathophysiology is necessary for effective treatment and overall better understanding of the disease processes.

Persons experiencing vision disturbances or in a high-risk population for specific ophthalmic pathologies should be proactive with their eye health and see an ophthalmologist or optometrist. Early detection is key in the prognosis of the various diseases. The review can be used as a resource for those affected by; those who treat medically; those interested in common causes vision impairment and blindness.

References

84. Klein R1, Klein BE, Knudtson MD, Wong TY, Cotch MF, Liu K, Burke G, Saad MF, Jacobs DR Jr. Prevalence of age-related macular degeneration in 4 racial/ethnic groups in

132. Cikamatana L1, Mitchell P, Rochtchina E, Foran S, Wang JJ. Five-year incidence and progression of diabetic retinopathy in a defined older population: the Blue Mountains Eye

182. Ambrósio R Jr, Dawson DG, Salomão M, Guerra FP, Caiado ALC, Belin MW. Corneal ectasia after LASIK despite low preoperative risk: tomographic and biomechanical findings in the unoperated, stable, fellow eye. Journal Of Refractive Surgery (Thorofare,

196. Kodavoor SK, Deb B, Ramamurthy D. Outcome of deep anterior lamellar keratoplasty patients with intraoperative Descemet’s membrane perforation: A retrospective cross-

